Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James N. Turner is active.

Publication


Featured researches published by James N. Turner.


Brain Research | 2003

Brain responses to micro-machined silicon devices

Donald H. Szarowski; M.D. Andersen; Scott Retterer; Andrew J. H. Spence; M. Isaacson; Harold G. Craighead; James N. Turner; William Shain

Micro-machined neural prosthetic devices can be designed and fabricated to permit recording and stimulation of specific sites in the nervous system. Unfortunately, the long-term use of these devices is compromised by cellular encapsulation. The goals of this study were to determine if device size, surface characteristics, or insertion method affected this response. Devices with two general designs were used. One group had chisel-shaped tips, sharp angular corners, and surface irregularities on the micrometer size scale. The second group had rounded corners, and smooth surfaces. Devices of the first group were inserted using a microprocessor-controlled inserter. Devices of the second group were inserted by hand. Comparisons were made of responses to the larger devices in the first group with devices from the second group. Responses were assessed 1 day and 1, 2, 4, 6, and 12 weeks after insertions. Tissues were immunochemically labeled for glial fibrillary acidic protein (GFAP) or vimentin to identify astrocytes, or for ED1 to identify microglia. For the second comparison devices from the first group with different cross-sectional areas were analyzed. Similar reactive responses were observed following insertion of all devices; however, the volume of tissue involved at early times, <1 week, was proportional to the cross-sectional area of the devices. Responses observed after 4 weeks were similar for all devices. Thus, the continued presence of devices promotes formation of a sheath composed partly of reactive astrocytes and microglia. Both GFAP-positive and -negative cells were adherent to all devices. These data indicate that device insertion promotes two responses-an early response that is proportional to device size and a sustained response that is independent of device size, geometry, and surface roughness. The early response may be associated with the amount of damage generated during insertion. The sustained response is more likely due to tissue-device interactions.


Experimental Neurology | 1999

Cerebral Astrocyte Response to Micromachined Silicon Implants

James N. Turner; William Shain; Donald H. Szarowski; M. Andersen; S. Martins; M. Isaacson; Harold G. Craighead

The treatment of neurologic disorders and the restoration of lost function due to trauma by neuroprosthetic devices has been pursued for over 20 years. The methodology for fabricating miniature devices with sophisticated electronic functions to interface with nervous system tissue is available, having been well established by the integrated circuit industry. Unfortunately, the effectiveness of these devices is severely limited by the tissue reaction to the insertion and continuous presence of the implant, a foreign object. This study was designed to document the response of reactive astrocytes in the hope that this information will be useful in specifying new fabrication technologies and devices capable of prolonged functioning in the brain. Model probes fabricated from single crystal silicon wafers were implanted into the cerebral cortices of rats. The probes had a 1 x 1-mm tab, for handling, and a 2-mm-long shaft with a trapezoidal cross-section (200-microm base, 60microm width at the top, and 130 microm height). The tissue response was studied by light and scanning electron microscopy at postinsertion times ranging from 2 to 12 weeks. A continuous sheath of cells was found to surround the insertion site in all tissue studied and was well developed but loosely organized at 2 weeks. By 6 and 12 weeks, the sheath was highly compacted and continuous, isolating the probe from the brain. At 2 and 4 weeks, the sheath was disrupted when the probe was removed from the fixed tissue, indicating that cells attached more strongly to the surface of the probe than to the nearby tissue. The later times showed much less disruption. Scanning electron microscopy of the probes showed adherent cells or cell fragments at all time points. Thus, as the sheath became compact, the cells on the probe and the cells in the sheath had decreased adhesion to each other. Immunocytochemistry demonstrated that the sheath was labeled with antibodies to glial fibrillary acidic protein (GFAP), an indicator for reactive gliosis. The tissue surrounding the insertion site showed an increased number of GFAP-positive cells which tended to return to control levels as a function of time after probe insertion. It was concluded that reactive gliosis is an important part of the process forming the cellular sheath. Further, the continuous presence of the probe appears to result in a sustained response that produces and maintains a compact sheath, at least partially composed of reactive glia, which isolates the probe from the brain.


international conference of the ieee engineering in medicine and biology society | 1999

Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms

Ali Can; Hong Shen; James N. Turner; Howard L. Tanenbaum; Badrinath Roysam

Algorithms are presented for rapid, automatic, robust, adaptive, and accurate tracing of retinal vasculature and analysis of intersections and crossovers. This method improves upon prior work in several ways: automatic adaptation from frame to frame without manual initialization/adjustment, with few tunable parameters; robust operation on image sequences exhibiting natural variability, poor and varying imaging conditions, including over/under-exposure, low contrast, and artifacts such as glare; does not require the vasculature to be connected, so it can handle partial views; and operation is efficient enough for use on unspecialized hardware, and amenable to deadline-driven computing, being able to produce a rapidly and monotonically improving sequence of usable partial results. Increased computation can be traded for superior tracing performance. Its efficiency comes from direct processing on gray-level data without any preprocessing, and from processing only a minimally necessary fraction of pixels in an exploratory manner, avoiding low-level image-wide operations such as thresholding, edge detection, and morphological processing. These properties make the algorithm suited to real-time, on-line (live) processing and is being applied to computer-assisted laser retinal surgery.


international conference of the ieee engineering in medicine and biology society | 2002

Rapid automated three-dimensional tracing of neurons from confocal image stacks

Khalid Al-Kofahi; Sharie Lasek; Donald H. Szarowski; Christopher Pace; George Nagy; James N. Turner; Badrinath Roysam

Algorithms are presented for fully automatic three-dimensional (3D) tracing of neurons that are imaged by fluorescence confocal microscopy. Unlike previous voxel-based skeletonization methods, the present approach works by recursively following the neuronal topology, using a set of 4 /spl times/ N/sup 2/ directional kernels (e.g., N = 32), guided by a generalized 3D cylinder model. This method extends our prior work on exploratory tracing of retinal vasculature to 3D space. Since the centerlines are of primary interest, the 3D extension can be accomplished by four rather than six sets of kernels. Additional modifications, such as dynamic adaptation of the correlation kernels, and adaptive step size estimation, were introduced for achieving robustness to photon noise, varying contrast, and apparent discontinuity and/or hollowness of structures. The end product is a labeling of all somas present, graph-theoretic representations of all dendritic/axonal structures, and image statistics such as soma volume and centroid, soma interconnectivity, the longest branch, and lengths of all graph branches originating from a soma. This method is able to work directly with unprocessed confocal images, without expensive deconvolution or other preprocessing. It is much faster that skeletonization, typically consuming less than a minute to trace a 70 MB image on a 500 MHz computer. These properties make it attractive for large-scale automated tissue studies that require rapid on-line image analysis, such as high-throughput neurobiology/angiogenesis assays, and initiatives such as the Human Brain Project.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2003

Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies

William Shain; Leah Spataro; Jonathan Dilgen; Kraig Haverstick; Scott Retterer; M. Isaacson; Mark Saltzman; James N. Turner

While chronic use of indwelling micromachined neural prosthetic devices has great potential, the development of reactive responses around them results in a decrease in electrode function over time. Since the cellular events responsible for these responses may be anti-inflammatory in nature, we have tested the effectiveness of dexamethasone and cyclosporin A as potential drugs for developing intervention strategies following insertion of single-shank micromachined silicon devices. Peripheral injection of dexamethasone was effective in attenuating increased expression of glial fibrillary acidic protein and astrocyte hyperplasia observed during both initial- and sustained-reactive responses observed at one and six weeks post insertion, respectively. Peripheral injection of cyclosporin A had no positive effect. If anything, application of this drug increased the early reactive response. Effectiveness of local release of dexamethasone in rat neocortex was tested by inserting ribbons of poly (ethyl-vinyl) acetate containing 35% (w/w) dexamethasone. Initial concentrations of dexamethasone were similar to those obtained by peripheral injection. Local drug release provided continued control of cellular reactive responses during the six-week study period. These results demonstrate that peripheral delivery of dexamethasone can be used to control reactive responses and that local drug delivery by slow-release from biocompatible polymers may be a more effective method of drug intervention. Incorporating these strategies on micromachined devices may provide an intervention strategy that will insure the chronic functioning of electrodes on intracortical neuroprosthetic devices.


Journal of Neural Engineering | 2006

Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion

Chris S. Bjornsson; Seung Jae Oh; Yousef Al-Kofahi; Yi-Je Lim; K. L. Smith; James N. Turner; Suvranu De; Badrinath Roysam; William Shain; Sung June Kim

Long-term integration of neuroprosthetic devices is challenged by reactive responses that compromise the brain-device interface. The contribution of physical insertion parameters to immediate damage is not well described. We have developed an ex vivo preparation to capture real-time images of tissue deformation during device insertion using thick tissue slices from rat brains prepared with fluorescently labeled vasculature. Qualitative and quantitative assessments of damage were made for insertions using devices with different tip shapes inserted at different speeds. Direct damage to the vasculature included severing, rupturing and dragging, and was often observed several hundred micrometers from the insertion site. Slower insertions generally resulted in more vascular damage. Cortical surface features greatly affected insertion success; insertions attempted through pial blood vessels resulted in severe tissue compression. Automated image analysis techniques were developed to quantify tissue deformation and calculate mean effective strain. Quantitative measures demonstrated that, within the range of experimental conditions studied, faster insertion of sharp devices resulted in lower mean effective strain. Variability within each insertion condition indicates that multiple biological factors may influence insertion success. Multiple biological factors may contribute to tissue distortion, thus a wide variability was observed among insertions made under the same conditions.


IEEE Transactions on Biomedical Engineering | 2000

Aligned microcontact printing of micrometer-scale poly-L-Lysine structures for controlled growth of cultured neurons on planar microelectrode arrays

Conrad D. James; Robert C. Davis; M. Meyer; A. Turner; S. Turner; G. Withers; L. Kam; Gary Banker; Harold G. Craighead; M. Issacson; James N. Turner; W. Shain

We describe a method for producing high-resolution chemical patterns on surfaces to control the attachment and growth of cultured neurons. Microcontact printing has been extended to allow the printing of /spl mu/m-scale protein lines aligned to an underlying pattern of planar microelectrodes. Poly-L-lysine (PL) lines have been printed on the electrode array for electrical studies on cultured neural networks. Rat hippocampal neurons showed degree of attachment selectivity to the PL and produced neurites that faithfully grew onto the electrode recording sites.


Experimental Neurology | 2005

Dexamethasone treatment reduces astroglia responses to inserted neuroprosthetic devices in rat neocortex

L. Spataro; J. Dilgen; Scott Retterer; Andrew J. H. Spence; M. Isaacson; James N. Turner; William Shain

Microfabricated neural prosthetic devices hold great potential for increasing knowledge of brain function and treating patients with lost CNS function. Time-dependent loss of brain-device communication limits long-term use of these devices. Lost CNS function is associated with reactive responses that produce an encapsulating cellular sheath. Since early reactive responses may be associated with injuries produced at the time of device insertion, for example, vascular damage and disruption of the blood-brain barrier, we tested the effectiveness of the synthetic glucocorticoid, dexamethasone, in controlling insertion- and device-associated reactive responses. Dexamethasone (200 microg/kg) was administered as subcutaneous injections for 1 or 6 days beginning on the day of device insertion. Single shank microfabricated silicon devices were inserted into pre-motor cortex of adult rats. Reactive responses were assessed by immunohistochemistry for glial fibrillary acidic protein (astrocytes), CD11b (microglia), and laminin that labeled extracellular protein deposited around the insertion site and in association with vascular elements. Data were collected by confocal microscopy imaging of 100-microm-thick tissue slices. Reactive responses in vehicle control animals were similar to non-injected control animals. Dexamethasone treatment profoundly effected early and sustained reactive responses observed 1 and 6 weeks following device insertion, respectively. Dexamethasone treatment greatly attenuated astroglia responses, while microglia and vascular responses appeared to be increased. The 6-day treatment was more effective than the single injection regime. These results suggest that anti-inflammatory agents can be used to control reactive responses around inserted neural prosthetic devices and may provide a means to insure their long-term function.


Journal of Biomedical Materials Research | 2000

Attachment of astroglial cells to microfabricated pillar arrays of different geometries

Andrea M. P. Turner; N. Dowell; Stephen Turner; L. Kam; M. Isaacson; James N. Turner; Harold G. Craighead; William Shain

We studied the attachment of astroglial cells on smooth silicon and arrays of silicon pillars and wells with various widths and separations. Standard semiconductor industry photolithographic techniques were used to fabricate pillar arrays and wells in single-crystal silicon. The resulting pillars varied in width from 0. 5 to 2.0 micrometer, had interpillar gaps of 1.0-5.0 micrometer, and were 1.0 micrometer in height. Arrays also contained 1.0-micromter-deep wells that were 0.5 micrometer in diameter and separated by 0.5-2.0 micrometer. Fluorescence, reflectance, and confocal light microscopies as well as scanning electron microscopy were used to quantify cell attachment, describe cell morphologies, and study the distribution of cytoskeletal proteins actin and vinculin on surfaces with pillars, wells, and smooth silicon. Seventy percent of LRM55 astroglial cells displayed a preference for pillars over smooth silicon, whereas only 40% preferred the wells to the smooth surfaces. Analysis of variance statistics performed on the data sets yielded values of p > approximately.5 for the comparison between pillar data sets and < approximately.0003 in the comparison between pillar and well data sets. Actin and vinculin distributions were highly polarized in cells found on pillar arrays. Scanning electron microscopy clearly demonstrated that cells made contact with the tops of the pillars and did not reach down into the spaces between pillars even when the interpillar gap was 5.0 microm. These experiments support the use of surface topography to direct the attachment, growth, and morphology of cells. These surfaces can be used to study fundamental cell properties such as cell attachment, proliferation, and gene expression. Such topography might also be used to modify implantable medical devices such as neural implants and lead to future developments in tissue engineering.


Biomaterials | 2001

Axonal outgrowth of hippocampal neurons on micro-scale networks of polylysine-conjugated laminin

Lance C. Kam; William Shain; James N. Turner; Rena Bizios

Microcontact printing was used to define an interconnected lattice network of polylysine-conjugated laminin, a protein-polypeptide ligate that is an effective promoter of neuron outgrowth on material surfaces. In the presence of serum proteins, rat hippocampal neurons selectively adhered to features of polylysine-conjugated laminin as narrow as 2.6 microm in width. Adhering neurons extended long axonal processes, which precisely followed and did not deviate from the prescribed patterns, demonstrating that neurons respond to this protein with high selectivity and that these techniques effectively provide long-range guidance of axonal outgrowth. Further examination of neuron response under serum-free cell culture conditions demonstrated that the outgrowth-promoting activity of polylysine-conjugated laminin was attributed to biologically active laminin. Together, these results demonstrate that polylysine-conjugated laminin provides for high-precision guidance of neuron attachment and axon outgrowth on material surfaces in a serum-independent manner. This ability to guide hippocampal neuron response in low-density, serum-free culture with high precision is valuable for the development of advanced, neuron-based devices.

Collaboration


Dive into the James N. Turner's collaboration.

Top Co-Authors

Avatar

William Shain

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald H. Szarowski

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Karen L. Smith

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sung June Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Timothy J. Holmes

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Isaacson

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Matthew R. Hynd

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge