Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James O. Berry is active.

Publication


Featured researches published by James O. Berry.


Molecular Plant-microbe Interactions | 1998

Salicylic Acid Can Induce Resistance to Plant Virus Movement

Martin Naylor; Alex M. Murphy; James O. Berry; John P. Carr

Salicylic acid (SA) treatment has recently been reported to inhibit replication of tobacco mosaic virus (TMV) in inoculated tissue. Furthermore, resistance is induced via a novel defensive signal transduction pathway sensitive to inhibition by salicylhydroxamic acid (SHAM; S. Chivasa, A. M. Murphy, M. Naylor, and J. P. Carr, Plant Cell 9: 547–557, 1997). The goals of this study were to determine if replication of viruses other than TMV could be inhibited by SA and, if so, whether the resistance to other viruses could also be prevented by SHAM. Potato virus X (PVX) RNA accumulation in inoculated tobacco leaf tissue was reduced by SA treatment and resistance was dependent on the SHAM-sensitive signaling pathway. However, although symptoms of cucumber mosaic virus (CMV) infection were delayed in SA-treated tobacco plants, this was not due to inhibition of replication but rather to inhibition of systemic movement of the virus. 14CO2-feeding experiments indicated that SA-induced interference with long-distance...


Molecular and Cellular Biology | 1985

Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons.

James O. Berry; B.J. Nikolau; John P. Carr; Daniel F. Klessig

The regulation of expression of the genes encoding the large subunit (LSU) and small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase (RuBPCase) was examined in 1- through 8-day-old, dark-grown (etiolated) and light-grown amaranth cotyledons. RuBPCase specific activity in light-grown cotyledons increased during this 8-day period to a level 15-fold higher than in dark-grown cotyledons. Under both growth conditions, the accumulation of the LSU and SSU polypeptides was not coordinated. Initial detection of the SSU occurred 1 and 2 days after the appearance of the LSU in light- and dark-grown cotyledons, respectively. Furthermore, although the levels of the LSU were similar in both light- and dark-grown seedlings, the amount of the SSU followed clearly the changes in enzyme activity. Synthesis of these two polypeptides was dramatically different in etiolated versus light-grown cotyledons. In light the synthesis of both subunits was first observed on day 2 and continued throughout the growth of the cotyledons. In darkness the rate of synthesis of both subunits was much lower than in light and occurred only as a burst between days 2 and 5 after planting. However, mRNAs for both subunits were present in etiolated cotyledons at similar levels on days 4 through 7 (by Northern analysis) and were functional in vitro, despite their apparent inactivity in vivo after day 5. In addition, since both LSU and SSU mRNA levels were lower in dark- than in light-grown seedlings, our results indicate that both transcriptional and post-transcriptional controls modulate RuBPCase production in developing amaranth cotyledons.


Journal of Biological Chemistry | 2004

Inducible Expression, Enzymatic Activity, and Origin of Higher Plant Homologues of Bacterial RelA/SpoT Stress Proteins in Nicotiana tabacum

Robert M. Givens; Mei-Hui Lin; Derek J. Taylor; Undine Mechold; James O. Berry; V. James Hernandez

All living cells possess adaptive responses to environmental stress that are essential to ensuring cell survival. For motile organisms, this can culminate in avoidance or attractile behavior, but for sessile organisms such as plants, stress adaptation is a process of success or failure within the confines of a given environment. Nearly all bacterial species possess a highly evolved system for stress adaptation, known as the “stringent response.” This ancient and ubiquitous regulatory response is mediated by production of a second messenger of general stress, the nucleotide guanosine-3′,5′-(bis)pyrophosphate (ppGpp), which mediates reprogramming of the global transcriptional output of the cell. Accumulation of ppGpp is stress-induced through the enzymatic activation of the well known bacterial ppGpp synthetases, RelA and SpoT. We have recently discovered homologues of bacterial relA/spoT genes in the model plant Nicotiana tabacum. We hypothesize that these homologues (designated RSH genes for RelA/SpoT homologues) serve a stress-adaptive function in plants analogous with their function in bacteria. In support of this hypothesis, we find 1) inducibility of tobacco RSH gene expression following treatment with jasmonic acid; 2) bona fide ppGpp synthesis activity of purified recombinant Nt-RSH2 protein, and 3) a wide spread distribution of RSH gene expression in the plant kingdom. Phylogenetic analyses identifies a distinct phylogenetic branch for the plant RSH proteins with two subgroups and supports ancient symbiosis and nuclear gene transfer as a possible origin for these stress response genes in plants. In addition, we find that Nt-RSH2 protein co-purifies with chloroplasts in subcellular fractionation experiments. Taken together, our findings implicate a direct mode of action of these ppGpp synthetases with regard to plant physiology, namely regulation of chloroplast gene expression in response to plant defense signals.


The Plant Cell | 1992

Regulation of C4 Gene Expression in Developing Amaranth Leaves.

Jing-Liang Wang; Daniel F. Klessig; James O. Berry

Immunofluorescence microscopy and in situ hybridization were used to examine the expression of genes encoding C4 photosynthetic enzymes during early leaf development in the C4 dicotyledonous grain plant amaranth. During early developmental stages, the chloroplast-encoded large subunit and nuclear-encoded small subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) were expressed in both bundle sheath and mesophyll cells in a C3-type pattern. The RuBPCase proteins and mRNAs became specifically localized to bundle sheath cells in the characteristic C4-type pattern as the leaves continued to expand and develop. Changes in the localization of the RuBPCase proteins corresponded closely with changes in the localization of their mRNAs, indicating that the cell-specific expression of genes encoding RuBPCase is controlled, at least in part, at the level of transcript accumulation. Genes encoding pyruvate orthophosphate dikinase were expressed specifically in mesophyll cells at all developmental stages examined. Immunolocalization with antibodies raised against phosphoenolpyruvate carboxylase (PEPCase) showed that this enzyme is present only in leaf mesophyll cells, even though RNA sequences with homology to PEPCase gene sequences were present in both bundle sheath and mesophyll cells. These results suggest that the regulation of genes encoding PEPCase in amaranth is complex and could involve the differential expression of divergent PEPCase genes or possibly regulation at the post-transcriptional level.


The Plant Cell | 1995

Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants.

Hai Kinal; Chung-Mo Park; James O. Berry; Yigal Koltin; Jeremy A. Bruenn

Ustilago maydis is a fungal pathogen of maize. Some strains of U. maydis encode secreted polypeptide toxins capable of killing other susceptible strains of U. maydis. We show here that one of these toxins, the KP6 killer toxin, is synthesized by transgenic tobacco plants containing the viral toxin cDNA under the control of a cauliflower mosaic virus promoter. The two components of the KP6 toxin, designated alpha and beta, with activity and specificity identical to those found in toxin secreted by U. maydis cells, were isolated from the intercellular fluid of the transgenic tobacco plants. The beta polypeptide from tobacco was identical in size and N-terminal sequence to the U. maydis KP6 beta polypeptide. Processing of the KP6 preprotoxin in U. maydis requires a subtilisin-like processing protease, Kex2p, which is present in both animal and fungal cells and is required for processing of (among other things) small secreted polypeptide hormones and secreted toxins. Our findings present evidence for Kex2p-like processing activity in plants. The systemic production of this viral killer toxin in crop plants may provide a new method of engineering biological control of fungal pathogens in crop plants.


The Plant Cell | 1993

Carbon Sink-to-Source Transition Is Coordinated with Establishment of Cell-Specific Gene Expression in a C4 Plant.

Jing-Liang Wang; Robert Turgeon; John R Carr; James O. Berry

Plants that use the highly efficient C4 photosynthetic pathway possess two types of specialized leaf cells, the mesophyll and bundle sheath. In mature C4 leaves, the CO2 fixation enzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) is specifically compartmentalized to the bundle sheath cells. However, in very young leaves of amaranth, a dicotyledonous C4 plant, genes encoding the large subunit and small subunit of RuBPCase are initially expressed in both photosynthetic cell types. We show here that the RuBPCase mRNAs and proteins become specifically localized to leaf bundle sheath cells during the developmental transition of the leaf from carbon sink to carbon source. Bundle sheath cell-specific expression of RuBPCase genes and the sink-to-source transition began initially at the leaf apex and progressed rapidly and coordinately toward the leaf base. These findings demonstrated that two developmental transitions, the change in photoassimilate transport status and the establishment of bundle sheath cell-specific RuBPCase gene expression, are tightly coordinated during C4 leaf development. This correlation suggests that processes associated with the accumulation and transport of photosynthetic compounds may influence patterns of photosynthetic gene expression in C4 plants.


Plant Physiology | 1996

Tissue-Specific and Light-Mediated Expression of the C4 Photosynthetic NAD-Dependent Malic Enzyme of Amaranth Mitochondria

John J. Long; James O. Berry

In the C4 dicotyledonous grain plant amaranth (Amaranthus hypochondriacus), a mitochondrial NAD-dependent malic enzyme (NAD-ME; EC 1.1.1.39) serves a specialized and essential role in photosynthetic carbon fixation. In this study we have examined specialized photosynthetic gene expression patterns for the NAD-ME [alpha] subunit. We show here that the [alpha] subunit gene is preferentially expressed in leaves and cotyledons (the most photosynthetically active tissues), and this expression is specific to the bundle-sheath cells of these tissues from the earliest stages of development. Synthesis of the [alpha] subunit polypeptide and accumulation of its corresponding mRNA are strongly light-dependent, but this regulation is also influenced by seedling development. In addition, light-dependent accumulation of the [alpha] subunit mRNA is regulated at transcriptional as well as posttranscriptional levels. Our findings demonstrate that the NAD-ME of amaranth has acquired numerous complex tissue-specific and light-mediated regulation patterns that define its specialized function as a key enzyme in the C4 photosynthetic pathway.


Journal of Biological Chemistry | 2006

Untranslated Regions of FbRbcS1 mRNA Mediate Bundle Sheath Cell-specific Gene Expression in Leaves of a C4 Plant

Minesh Patel; Alan Siegel; James O. Berry

C4 photosynthesis typically requires two specialized leaf cell types, bundle sheath (bs) and mesophyll (mp), which provide the foundation for this highly efficient carbon assimilation pathway. In leaves of Flaveria bidentis, a dicotyledonous C4 plant, ribulose 1,5-bisphosphate carboxylase (rubisco) accumulates only in bs cells surrounding the vascular centers and not in mp cells. This is in contrast to the more common C3 plants, which accumulate rubisco in all photosynthetic cells. Many previous studies have focused on transcriptional control of C4 cell type-specificity; however, post-transcriptional regulation has also been implicated in the bs-specific expression of genes encoding the rubisco subunits. In this current study, a biolistic leaf transformation assay has provided direct evidence that the 5′- and 3′-untranslated regions (UTRs) of F. bidentis FbRbcS1 mRNA (from a nuclear gene encoding the rubisco small subunit), in themselves, confer strong bs cell-specific expression to gfpA reporter gene transcripts when transcribed from a constitutive CaMV promoter. In transformed leaf regions, strong bs cell-specific GFP expression was accompanied by corresponding bs cell-specific accumulation of the constitutively transcribed FbRbcS1 5′-UTR-gfpA-3′-UTR mRNAs. Control constructs lacking any RbcS mRNA sequences were expressed in all leaf cell types. These findings demonstrate that characteristic cell type-specific FbRbcS1 expression patterns in C4 leaves can be established entirely by sequences contained within the transcribed UTRs of FbRbcS1 mRNAs. We conclude that selective transcript stabilization (in bs cells) or degradation (in mp cells) plays a key role in determining bs cell-specific localization of the rubisco enzyme.


Plant Physiology | 2004

Untranslated Regions from C4 Amaranth AhRbcS1 mRNAs Confer Translational Enhancement and Preferential Bundle Sheath Cell Expression in Transgenic C4 Flaveria bidentis

Minesh Patel; Amy C. Corey; Li-Ping Yin; Shahjahan Ali; William C. Taylor; James O. Berry

Many aspects of photosynthetic gene expression are posttranscriptionally regulated in C4 plants. To determine if RbcS mRNA untranslated regions (UTRs) in themselves could confer any characteristic C4 expression patterns, 5′- and 3′-UTRs of AhRbcS1 mRNA from the C4 dicot amaranth were linked to a gusA reporter gene. These were constitutively transcribed from a cauliflower mosaic virus promoter and assayed for posttranscriptional expression patterns in transgenic lines of the C4 dicot Flaveria bidentis. Three characteristic C4 expression patterns were conferred by heterologous AhRbcS1 UTRs in transgenic F. bidentis. First, the AhRbcS1 UTRs conferred strong translational enhancement of gusA expression, relative to control constructs lacking these UTRs. Second, while the UTRs did not appear to confer tissue-specific expression when analyzed by β-glucuronidase activity assays, differences in gusA mRNA accumulation were observed in leaves, stems, and roots. Third, the AhRbcS1 UTRs conferred preferential gusA expression (enzyme activity and gusA mRNA accumulation) in leaf bundle sheath cells. AhRbcS1 UTR-mediated translational enhancement was also observed in transgenic C3 plants (tobacco [Nicotiana tabacum]) and in in vitro translation extracts. These mRNAs appear to be translated with different efficiencies in C4 versus C3 plants, indicating that processes determining overall translational efficiency may vary between these two categories of higher plants. Our findings suggest that the AhRbcS1 5′-UTR functions as a strong translational enhancer in leaves and other tissues, and may work synergistically with the 3′-UTR to modulate overall levels of Rubisco gene expression in different tissues and cell types of C4 plants.


Photosynthesis Research | 2013

Photosynthetic gene expression in higher plants

James O. Berry; Pradeep Yerramsetty; Amy M. Zielinski; Christopher M Mure

Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

Collaboration


Dive into the James O. Berry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel F. Klessig

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar

John P. Carr

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Minesh Patel

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana S. Aga

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Li-Ping Yin

Capital Normal University

View shared research outputs
Top Co-Authors

Avatar

Michael H. Farkas

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Li

Capital Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge