Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Best is active.

Publication


Featured researches published by James P. Best.


Science | 2013

One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering

Hirotaka Ejima; Joseph J. Richardson; Kang Liang; James P. Best; Martin P. van Koeverden; Georgina K. Such; Jiwei Cui; Frank Caruso

One-Step Coverage Controllable formation of thin films often requires slow deposition conditions or multiple rounds of coating. Ejima et al. (p. 154; see the Perspective by Bentley and Payne) report a simple and versatile method for coating surfaces with thin biocompatible films made from the condensation of Fe3+ ions and a natural polyphenol, tannic acid, from aqueous solutions. Flat surfaces, colloidal particles, and even bacterial cells could be coated, and the coats could subsequently be degraded by changing the pH. Thin adherent films formed from ferric ions and a natural polyphenol, tannic acid, can coat a wide variety of surfaces. [Also see Perspective by Bentley and Payne] The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.


ACS Nano | 2012

Engineering particles for therapeutic delivery: prospects and challenges.

Yan Yan; Georgina K. Such; Angus P. R. Johnston; James P. Best; Frank Caruso

Nanoengineered particles that can facilitate drug formulation and passively target tumors have reached the clinic in recent years. These early successes have driven a new wave of significant innovation in the generation of advanced particles. Recent developments in enabling technologies and chemistries have led to control over key particle properties, including surface functionality, size, shape, and rigidity. Combining these advances with the rapid developments in the discovery of many disease-related characteristics now offers new opportunities for improving particle specificity for targeted therapy. In this Perspective, we summarize recent progress in particle-based therapeutic delivery and discuss important concepts in particle design and biological barriers for developing the next generation of particles.


ACS Applied Materials & Interfaces | 2012

High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles.

Jonathan Moghal; Johannes Kobler; Jürgen Sauer; James P. Best; Martin Gardener; Andrew A. R. Watt; Gareth Wakefield

Mesoporous silica nanoparticles are used to fabricate antireflectance coatings on glass substrates. The combination of mesoporous silica nanoparticles in conjunction with a suitable binder material allows mechanically robust single layer coatings with a reflectance <0.1% to be produced by simple wet processing techniques. Further advantages of these films is that their structure results in broadband antireflective properties with a reflection minimum that can tuned between 400 nm and 1900 nm. The ratio of binder material to mesoporous nanoparticles allows control of the refractive index. In this report, we discuss how control of the structural properties of the coatings allows optimization of the optical properties.


Advanced Healthcare Materials | 2012

The Role of Particle Geometry and Mechanics in the Biological Domain

James P. Best; Yan Yan; Frank Caruso

Nanostructured particulate materials are expected to revolutionize diagnostics and the delivery of therapeutics for healthcare. To date, chemistry-derived solutions have been the major focus in the design of materials to control interactions with biological systems. Only recently has control over a new set of physical parameters, including size, shape, and rigidity, been explored to optimize the biological response and the in vivo performance of nanoengineered delivery vectors. This Review highlights the methods used to manipulate the physical properties of particles and the relevance of these physical properties to cellular and circulatory interactions. Finally, the importance of future work to synergistically tailor both physical and chemical properties of particulate materials is discussed, with the aim of improving control over particle interactions in the biological domain.


Advanced Materials | 2014

Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model

Jiwei Cui; Mattias Björnmalm; Kang Liang; Chenglong Xu; James P. Best; Xuehua Zhang; Frank Caruso

Super-soft PEG hydrogel particles with tunable elasticity are prepared via a mesoporous silica templating method. The deformability behavior of these particles, in a microfluidic blood-capillary model, can be tailored to be similar to that of human red blood cells. These results provide a new platform for the design and development of soft hydrogel particles for investigating bio-nano interactions.


Advanced Materials | 2013

Mechanically Tunable, Self‐Adjuvanting Nanoengineered Polypeptide Particles

Jiwei Cui; Robert De Rose; James P. Best; Angus P. R. Johnston; Sheilajen Alcantara; Kang Liang; Georgina K. Such; Stephen J. Kent; Frank Caruso

DNA-loaded polypeptide particles are prepared via templated assembly of mesoporous silica for the delivery of adjuvants. The elasticity and cargo-loading capacity of the obtained particles can be tuned by the amount of cross-linker used to stabilize the polypeptide particles. The use of polypeptide particles as biocarriers provides a promising method for vaccine delivery.


Bone | 2016

Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly

Mohammad J. Mirzaali; Jakob Schwiedrzik; Suwanwadee Thaiwichai; James P. Best; Johann Michler; Philippe Zysset

The growing incidence of skeletal fractures poses a significant challenge to ageing societies. Since a major part of physiological loading in the lower limbs is carried by cortical bone, it would be desirable to better understand the structure-mechanical property relationships and scale effects in this tissue. This study aimed at assessing whether microindentation properties combined with chemical and morphological information are usable to predict macroscopic elastic and strength properties in a donor- and site-matched manner. Specimens for quasi-static macroscopic tests in tension, compression, and torsion and microindentation were prepared from a cohort of 19 male and 20 female donors (46 to 99 years). All tests were performed under fully hydrated conditions. The chemical composition of the extra-cellular matrix was investigated with Raman spectroscopy. The results of the micro-mechanical tests were combined with morphological and compositional properties using a power law relationship to predict the macro-mechanical results. Microindentation properties were not gender dependent, remarkably constant over age, and showed an overall small variation with standard deviations of approximately 10 %. Similar results were obtained for chemical tissue composition. Macro-mechanical stiffness and strength were significantly related to porosity for all load cases (p<0.05). In case of macroscopic yield strain and work-to-failure this was only true in torsion and compression, respectively. The correlations of macro-mechanical with micro-mechanical, morphological, and chemical properties showed no significance for cement line density, mineralisation, or variations in the microindentation results and were dominated by porosity with a moderate explanatory power of predominately less than 50 %. The results confirm that age, with minor exceptions gender, and small variations in average mineralisation have negligible effect on the tissue microindentation properties of human lamellar bone in the elderly. Furthermore, our findings suggest that microindentation experiments are suitable to predict macroscopic mechanical properties in the elderly only on average and not on a one to one basis. The presented data may help to form a better understanding of the mechanisms of ageing in bone tissue and of the length scale at which they are active. This may be used for future prediction of fracture risk in the elderly.


Langmuir | 2013

Mechanics of pH-Responsive Hydrogel Capsules

James P. Best; Martin Peter Neubauer; Sameen Javed; Henk H. Dam; Andreas Fery; Frank Caruso

While soft hydrogel nano- and microstructures hold great potential for therapeutic treatments and in vivo applications, their nanomechanical characterization remains a challenge. In this paper, soft, single-component, supported hydrogel films were fabricated using pendant-thiol-modified poly(methacrylic acid) (PMASH). The influence of hydrogel architecture on deformation properties was studied by fabricating films on particle supports and producing free-standing capsules. The influence of the degree of thiol-based cross-linking on the mechanical properties of the soft hydrogel systems (core-shell and capsules) was studied using a colloidal-probe (CP) AFM technique. It was found that film mechanical properties, stability, and capsule swelling could be finely tuned by controlling the extent of poly(methacrylic acid) thiol modification. Furthermore, switching the pH from 7.4 to 4.0 led to film densification due to increased hydrogen bonding. Hydrogel capsule systems were found to have stiffness values ranging from 0.9 to 16.9 mN m(-1) over a thiol modification range of 5 to 20 mol %. These values are significantly greater than those for previously reported PMASH planar films of 0.7-5.7 mN m(-1) over the same thiol modification range (Best et al., Soft Matter 2013, 9, 4580-4584). Films on particle substrates had comparable mechanical properties to planar films, demonstrating that while substrate geometry has a negligible effect, membrane and tension effects may play an important role in capsule force resistance. Further, when transitioning from solid-supported films to free-standing capsules, simple predictions of shell stiffness based on modulus changes found for supported films are not valid. Rather, additional effects like diameter increases (geometrical changes) as well as tension buildup need to be taken into account. These results are important for research related to the characterization of soft hydrogel materials and control over their mechanical properties.


Advanced Materials | 2013

Near-Incompressible Faceted Polymer Microcapsules from Metal-Organic Framework Templates

Hirotaka Ejima; Nobuhiro Yanai; James P. Best; Melinda Sindoro; Steve Granick; Frank Caruso

Faceted polymer microcapsules are prepared from metal-organic framework (MOF) templates. The MOF templates are removable under mild aqueous conditions. The obtained microcapsules are stiffer than their spherical counterparts, reflecting the near-incompressibility of the facet edges, and indicating that the faceting might be a useful strategy for controlling the mechanical properties of polymer microcapsules.


Langmuir | 2013

Tuning the Mechanical Properties of Nanoporous Hydrogel Particles via Polymer Cross-Linking

James P. Best; Jiwei Cui; Markus Müllner; Frank Caruso

Soft hydrogel particles with tunable mechanical properties are promising for next-generation therapeutic applications. This is due to the increasingly proven role that physicochemical properties play in particulate-based delivery vectors, both in vitro and in vivo. The ability to understand and quantify the mechanical properties of such systems is therefore essential to optimize function and performance. We report control over the mechanical properties of poly(methacrylic acid) (PMA) hydrogel particles based on a mesoporous silica templating method. The mechanical properties of the obtained particles can be finely tuned through variation of the cross-linker concentration, which is hereby quantified using a cross-linking polymer with a fluorescent tag. We demonstrate that the mechanical properties of the particles can be elucidated using an atomic force microscopy (AFM) force spectroscopy method, which additionally allows for the study of hydrogel material properties at the nanoscale through high-resolution force mapping. Youngs modulus and stiffness of the particles were tuned between 0.04 and 2.53 MPa and between 1.6 and 28.4 mN m(-1), respectively, through control over the cross-linker concentration. The relationship between the concentration of the cross-linker added and the amount of adsorbed polymer was observed to follow a Langmuir isotherm, and this relationship was found to correlate linearly with the particle mechanical properties.

Collaboration


Dive into the James P. Best's collaboration.

Top Co-Authors

Avatar

Johann Michler

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Caruso

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Jakob Schwiedrzik

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Juri Wehrs

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiwei Cui

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Kang Liang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Johannes Zechner

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge