Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Donahue is active.

Publication


Featured researches published by James P. Donahue.


Nature Chemistry | 2010

Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages

Xiaofei Kuang; Xiao-Yuan Wu; Rongmin Yu; James P. Donahue; Jinshun Huang; Can-Zhong Lu

Metal-organic frameworks form a unique class of multifunctional hybrid materials and have myriad applications, including gas storage and catalysis. Their structure is usually achieved through the infinite coordination of metal ions and multidentate organic ligands by means of strong covalent bonds. Threaded molecules such as catenanes and rotaxanes have largely been restricted to comprising components of two-dimensional interlocking rings or polygons. There are very few examples of the catenation of polyhedral cages. Although it has been postulated that the infinite extended architecture can be obtained from the polycatenation of a discrete cage based on such threading, this has not been documented to date. Here we describe an infinite three-dimensional metal-organic framework composed of catenated polyhedral cages, in which the framework is achieved by mechanical interlocking of all of the vertices of the cages. The three-dimensional polycatenated framework shows twofold self-interpenetration in its crystal packing. The penetration of polycatenanes creates nanosized voids into which the Keggin polyoxometalate anions are perfectly accommodated as counteranions.


Inorganic Chemistry | 2011

Monoanionic molybdenum and tungsten tris(dithiolene) complexes: a multifrequency EPR study.

Stephen Sproules; Priyabrata Banerjee; Thomas Weyhermüller; Yong Yan; James P. Donahue; Karl Wieghardt

Numerous Mo and W tris(dithiolene) complexes in varying redox states have been prepared and representative examples characterized crystallographically: [M(S(2)C(2)R(2))(3)](z) [M = Mo, R = Ph, z = 0 (1) or 1- (2); M = W, R = Ph, z = 0 (4) or 1- (5); R = CN, z = 2-, M = Mo (3) or W (6)]. Changes in dithiolene C-S and C-C bond lengths for 1 versus 2 and 4 versus 5 are indicative of ligand reduction. Trigonal twist angles (Θ) and dithiolene fold angles (α) increase and decrease, respectively, for 2 versus 1, 5 versus 4. Cyclic voltammetry reveals generally two reversible couples corresponding to 0/1- and 1-/2- reductions. The electronic structures of monoanionic molybdenum tris(dithiolene) complexes have been analyzed by multifrequency (S-, X-, Q-band) EPR spectroscopy. Spin-Hamiltonian parameters afforded by spectral simulation for each complex demonstrate the existence of two distinctive electronic structure types. The first is [Mo(IV)((A)L(3)(5-•))](1-) ((A)L = olefinic dithiolene, type A), which has the unpaired electron restricted to the tris(dithiolene) unit and is characterized by isotropic g-values and small molybdenum superhyperfine coupling. The second is formulated as [Mo(V)((B)L(3)(6-))](1-) ((B)L = aromatic dithiolene, type B) with spectra distinguished by a prominent g-anisotropy and hyperfine coupling consistent with the (d(z(2)))(1) paramagnet. The electronic structure disparity is also manifested in their electronic absorption spectra. The compound [W(bdt)(3)](1-) exhibits spin-Hamiltonian parameters similar to those of [Mo(bdt)(3)](1-) and thus is formulated as [W(V)((B)L(3)(6-))](1-). The EPR spectra of [W((A)L(3))](1-) display spin-Hamiltonian parameters that suggest their electronic structure is best represented by two resonance forms {[W(IV)((A)L(3)(5-•))](1-) ↔ [W(V)((A)L(3)(6-))](1-)}. The contrast with the corresponding [Mo(IV)((A)L(3)(5-•))](1-) complexes highlights tungstens preference for higher oxidation states.


Inorganic Chemistry | 2009

Synthesis, structures, and properties of mixed dithiolene-carbonyl and dithiolene-phosphine complexes of tungsten.

P. Chandrasekaran; Kuppuswamy Arumugam; Upul Jayarathne; Lisa M. Pérez; Joel T. Mague; James P. Donahue

A new, high yield synthesis of [Ni(S(2)C(2)Me(2))(2)] (3) is described using 4,5-dimethyl-1,3-dithiol-2-one, Me(2)C(2)S(2)CO (1), as dithiolene ligand precursor. Reaction of (Me(2)C(2)S(2))Sn(n)Bu(2), 2, with WCl(6) produces tris(dithiolene) [W(S(2)C(2)Me(2))(3)] (6) and demonstrates the potential synthetic utility of this compound in metallodithiolene synthesis. The series of compounds [W(S(2)C(2)Me(2))(x)(CO)(6-2x)] (x = 1-3), obtained as a mixture via the reaction of [Ni(S(2)C(2)Me(2))(2)] with [W(MeCN)(3)(CO)(3)], has been characterized structurally. A trigonal prismatic geometry is observed for [W(S(2)C(2)Me(2))(CO)(4)] (4) and confirmed by a DFT geometry optimization to be lower in energy than an octahedron by 5.1 kcal/mol. The tris(dithiolene) compound [W(S(2)C(2)Me(2))(3)] crystallizes in disordered fashion upon a 2-fold axis in C2/c, a different space group than that observed for its molybdenum homologue (P1), which is attributed to a slightly smaller chelate fold angle, alpha, in the former. The reactivity of 4 and [W(S(2)C(2)Me(2))(2)(CO)(2)] (5) toward PMe(3) has been examined. Compound 4 yields only [W(S(2)C(2)Me(2))(CO)(2)(PMe(3))(2)] (7), while 5 produces either [W(S(2)C(2)Me(2))(2)(CO)(PMe(3))] (8) or [W(S(2)C(2)Me(2))(2)(PMe(3))(2)] (9) depending upon reaction conditions. Crystallographic characterization of 5, 8, and 9 reveals a trend toward greater reduction of the dithiolene ligand (i.e., more ene-1,2-dithiolate character) across the series, as manifested by C-C and C-S bond lengths. These structural data indicate a profound effect exerted by the pi-acidic CO ligands upon the apparent state of reduction of the dithiolene ligand in compounds with ostensibly the same oxidation state.


Inorganic Chemistry | 2009

Synthesis, Structures, and Properties of 1,2,4,5-Benzenetetrathiolate Linked Group 10 Metal Complexes

Kuppuswamy Arumugam; Mohamed C. Shaw; P. Chandrasekaran; Dino Villagrán; Thomas G. Gray; Joel T. Mague; James P. Donahue

Dimetallic compounds [(P-P)M(S(2)C(6)H(2)S(2))M(P-P)] (M = Ni, Pd; P-P = chelating bis(phosphine), 3a-3f) are prepared from O=CS(2)C(6)H(2)S(2)C=O or (n)Bu(2)SnS(2)C(6)H(2)S(2)Sn(n)Bu(2), which are protected forms of 1,2,4,5-benzenetetrathiolate. Selective monodeprotections of O=CS(2)C(6)H(2)S(2)C=O or (n)Bu(2)SnS(2)C(6)H(2)S(2)Sn(n)Bu(2) lead to [(P-P)Ni(S(2)C(6)H(2)S(2)C=O)] or [(P-P)Ni(S(2)C(6)H(2)S(2)Sn(n)Bu(2))]; the former is used to prepare trimetallic compounds [(dcpe)Ni(S(2)C(6)H(2)S(2))M(S(2)C(6)H(2)S(2))Ni(dcpe)] (M = Ni (6a) or Pt (6b); dcpe = 1,2-bis(dicyclohexylphosphino)ethane). Compounds 3a-3f are redox active and display two oxidation processes, of which the first is generally reversible. Dinickel compound [(dcpe)Ni(S(2)C(6)H(2)S(2))Ni(dcpe)] (3d) reveals two reversible oxidation waves with DeltaE(1/2) = 0.66 V, corresponding to K(c) of 1.6 x 10(11) for the mixed valence species. Electrochemical behavior is unstable to repeated scanning in the presence of [Bu(4)N][PF(6)] electrolyte but indefinitely stable with Na[BArF(24)] (BArF(24) = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate), suggesting that the radical cation generated by oxidation is vulnerable to reaction with PF(6)(-). Chemical oxidation of 3d with [Cp(2)Fe][BArF(24)] leads to formation of [3d][BArF(24)]. Structural identification of [3d][BArF(24)] reveals appreciable shortening and lengthening of C-S and C-C bond distances, respectively, within the tetrathioarene fragment compared to charge-neutral 3d, indicating this to be the redox active moiety. Attempted oxidation of [(dppb)Ni(S(2)C(6)H(2)S(2))Ni(dppb)] (3c) (dppb = 1,2-bis(diphenylphosphino)benzene) with AgBArF(24) produces [[(dppb)Ni(S(2)C(6)H(2)S(2))Ni(dppb)](2)(mu-Ag(2))][BArF(24)](2), [4c][BArF(24)](2), in which no redox chemistry has occurred. Crystal structures of bis(disulfide)-linked compounds [(P-P)Ni(S(2)C(6)H(2)(mu-S(2))(2)C(6)H(2)S(2))Ni(P-P)] are reported. Near IR spectroscopy upon cationic [3d](+) and neutral 6a reveals multiple intense absorptions in the 950-1400 nm region. Time-dependent density functional theory (DFT) calculations on a 6a model compound indicate that these absorptions are transitions between ligand-based pi-type orbitals that have significant contributions from the sulfur p orbitals.


Inorganic Chemistry | 2013

Ancillary Ligand Effects upon Dithiolene Redox Noninnocence in Tungsten Bis(dithiolene) Complexes

Yong Yan; Christopher S. Keating; P. Chandrasekaran; Upul Jayarathne; Joel T. Mague; Serena DeBeer; Kyle M. Lancaster; Stephen Sproules; Igor V. Rubtsov; James P. Donahue

An expanded set of compounds of the type [W(S2C2Me2)2L1L2](n) (n = 0: L1 = L2 = CO, 1; L1 = L2 = CN(t)Bu, 2; L1 = CO, L2 = carbene, 3; L1 = CO, L2 = phosphine, 4; L1 = L2 = phosphine, 5. n = 2-: L1 = L2 = CN(-), [6](2-)) has been synthesized and characterized. Despite isoelectronic formulations, the compound set reveals gradations in the dithiolene ligand redox level as revealed by intraligand bond lengths, υ(CCchelate), and rising edge energies in the sulfur K-edge X-ray absorption spectra (XAS). Differences among the terminal series members, 1 and [6](2-), are comparable to differences seen in homoleptic dithiolene complexes related by full electron transfer to/from a dithiolene-based MO. The key feature governing these differences is the favorable energy of the CO π* orbitals, which are suitably positioned to overlap with tungsten d orbitals and exert an oxidizing effect on both metal and dithiolene ligand via π-backbonding. The CN(-) π* orbitals are too high in energy to mix effectively with tungsten and thus leave the filled dithiolene π* orbitals unperturbed. This work shows how, and the degree to which, the redox level of a noninnocent ligand can be modulated by the choice of ancillary ligands(s).


Inorganic Chemistry | 2012

Redox-Controlled Interconversion between Trigonal Prismatic and Octahedral Geometries in a Monodithiolene Tetracarbonyl Complex of Tungsten

Yong Yan; P. Chandrasekaran; Joel T. Mague; Serena DeBeer; Stephen Sproules; James P. Donahue

The tetracarbonyl compounds [W(mdt)(CO)(4)] (1) and [W(Me(2)pipdt)(CO)(4)] (2) both have dithiolene-type ligands (mdt(2-) = 1,2-dimethyl-1,2-dithiolate; Me(2)pipdt = 1,4-dimethylpiperazine-2,3-dithione) but different geometries, trigonal prismatic (TP) and octahedral, respectively. Structural data suggest an ene-1,2-dithiolate ligand description, hence a divalent tungsten ion, for 1 and a dithioketone ligand, hence W(0) oxidation state, for 2. Density functional theory (DFT) calculations on 1 show the highest occupied molecular orbital (HOMO) to be a strong W-dithiolene π bonding interaction and the lowest unoccupied molecular orbital (LUMO) its antibonding counterpart. The TP geometry is preferred because symmetry allowed mixing of these orbitals via a configuration interaction (CI) stabilizes this geometry over an octahedron. The TP geometry for 2 is disfavored because W-dithiolene π overlap is attenuated because of a lowering of the sulfur content and a raising of the energy of this ligand π orbital by the conjugated piperazine nitrogen atoms in the Me(2)pipdt ligand. A survey of the Cambridge Structural Database identifies other W(CO)(4) compounds with pseudo C(4v) disposition of CO ligands and suggests a d(4) electron count to be a probable common denominator. Reduction of 1 induces a geometry change to octahedral because the singly occupied molecular orbital (SOMO) is at lower energy in this geometry. The cyclic voltammogram of 1 in CH(2)Cl(2) reveals a reduction wave at -1.14 V (vs Fc(+)/Fc) with an unusual offset between the cathodic and the anodic peaks (ΔE(p)) of 0.130 V, which is followed by a second, reversible reduction wave at -1.36 V with ΔE(p) = 0.091 V. The larger ΔE(p) observed for the first reduction is evidence of the trigonal prism-to-octahedron geometry change attending this process. Tungsten L(1)-edge X-ray absorption (XAS) data indicate a higher metal oxidation state in 1 than 2. Electron paramagnetic resonance data for [1](-) and [2](-) are both diagnostic of dithiolene ligand-based sulfur radical, indicating that one-electron reduction of 1 involves two-electron reduction of tungsten and one-electron oxidation of dithiolene ligand.


Inorganic Chemistry Communications | 2002

The first supramolecular assemblies comprised of dimetal units and chiral dicarboxylates

F. Albert Cotton; James P. Donahue; Carlos A. Murillo

Abstract The first molecules containing metal–metal bonded Mo24+ units linked by chiral dicarboxylates have been prepared and characterized by X-ray crystallography and 1H NMR spectroscopy; the compounds [Mo2(DAniF)3]2(dicarboxylate), 1 for l -tartrate and 2 for d -aspartate (DAniF=N,N′-di-p-anisylformamidinate) represent a first step toward the synthesis of more complex polygonal structures assembled from M2 units and chiral linkers.


Inorganic Chemistry | 2008

Computational Study of Iron Bis(dithiolene) Complexes: Redox Non-Innocent Ligands and Antiferromagnetic Coupling

Heiko Jacobsen; James P. Donahue

The molecular and electronic structure of monomeric ([Fe(S2C2H2)2](z), [Fe(S2C2(C6H4-p-OCH3)2)2](z)) and dimeric ([{Fe(S2C2H2)2}2](z)) iron bis(dithiolene) complexes, and of their phosphine adducts ([(PH3)Fe(S2C2H2)2](z), [(P(C6H5)3)Fe(S2C2H2)2](z), [(PH3)Fe(S2C2(C6H4-p-OCH3)2)2](z)), carrying various charges (z = 0, 1-, 2-), have been investigated by density functional theory (DFT). Net total spin polarization values S of zero, two, and four have been considered for all neutral model compounds and their dianions, whereas all monoanions have been examined with net total spin polarization values S of one, three, and five. The DFT calculations utilized the pure functional BP86, as well as the hybrid functionals B3LYP and B3LYP*. For the monomers, the calculations reveal the presence of redox non-innocent dithiolene ligands and antiferromagnetic coupling between the ligands and the metal center. For the dimers, complexes with antiferromagnetically coupled iron centers have been found to represent structures of low energy, if not lowest energy structures. The spin-coupling constant of [{Fe(S2C2H2)2}2](2-) is calculated as J = -230 cm(-1). On the basis of the computational results, a model for reversible, electrochemically controlled binding and release of phosphine ligands to iron bis(dithiolene) complexes is proposed. Only BP86 and B3LYP* results, but not those of B3LYP calculations, are in qualitative agreement with experimental findings. BP86 calculations provide the best quantitative match in comparison with the experiment.


Acta Crystallographica Section C-crystal Structure Communications | 2015

Tetra­hydro­berberine, a pharmacologically active naturally occurring alkaloid

Subramanya R.K. Pingali; James P. Donahue; Florastina Payton-Stewart

Tetrahydroberberine (systematic name: 9,10-dimethoxy-5,8,13,13a-tetrahydro-6H-benzo[g][1,3]benzodioxolo[5,6-a]quinolizine), C20H21NO4, a widely distributed naturally occurring alkaloid, has been crystallized as a racemic mixture about an inversion center. A bent conformation of the molecule is observed, with an angle of 24.72 (5)° between the arene rings at the two ends of the reduced quinolizinium core. The intermolecular hydrogen bonds that play an apparent role in crystal packing are 1,3-benzodioxole -CH2···OCH3 and -OCH3···OCH3 interactions between neighboring molecules.


Inorganic Chemistry | 2014

X-ray absorption spectroscopy systematics at the tungsten L-edge.

Upul Jayarathne; P. Chandrasekaran; Angelique F. Greene; Joel T. Mague; Serena DeBeer; Kyle M. Lancaster; Stephen Sproules; James P. Donahue

A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference between formal oxidation state and metal Zeff or, as in the case of [WIV(mdt)2(CO)2], exert the subtle effect of modulating the redox level of other ligands in the coordination sphere.

Collaboration


Dive into the James P. Donahue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dino Villagrán

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge