Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Edwards is active.

Publication


Featured researches published by James P. Edwards.


Chemistry & Biology | 2017

Small-Molecule Targets in Immuno-Oncology

Dashyant Dhanak; James P. Edwards; Ancho Nguyen; Peter J. Tummino

Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advanced stages of clinical development for many cancers. In addition, combination therapy with these agents and other immunomodulators is being intensively explored with the aim of improving primary response rates or prolonging overall survival. The effectiveness of cancer immunotherapy with biologics is spurring research in alternate approaches including small-molecule-mediated targeting of intracellular pathways modulating the innate and adaptive immune response. This focus of this review is on some of the key intracellular pathways where the development of a small-molecule therapeutic is attractive, tractable, and potentially synergistic with extracellular biologic-mediated immune checkpoint blockade.


Handbook of experimental pharmacology | 2017

Clinical Development of Histamine H4 Receptor Antagonists

Robin L. Thurmond; Jennifer D. Venable; David La; Sandra Snook; Paul J. Dunford; James P. Edwards

The discovery of the histamine H4 receptor (H4R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H4R relative to other histamine receptors. The discovery of the selective H4R antagonist JNJ 7777120 was vital for showing a role for the H4R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H4R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H4R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H4R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H4R antagonists can be beneficial in treating atopic dermatitis and pruritus.


Bioorganic & Medicinal Chemistry Letters | 2017

Identification and structure activity relationships of quinoline tertiary alcohol modulators of RORγt

David A. Kummer; Maxwell D. Cummings; Marta Cristina Abad; Joseph Kent Barbay; Glenda Castro; Ronald L. Wolin; Kevin D. Kreutter; Umar Maharoof; Cynthia M. Milligan; Rachel Nishimura; Joan Pierce; Celine Schalk-Hihi; John Spurlino; Maud Urbanski; Hariharan Venkatesan; Aihua Wang; Craig R. Woods; Xiaohua Xue; James P. Edwards; Anne Fourie; Kristi A. Leonard

A high-throughput screen of the ligand binding domain of the nuclear receptor retinoic acid-related orphan receptor gamma t (RORγt) employing a thermal shift assay yielded a quinoline tertiary alcohol hit. Optimization of the 2-, 3- and 4-positions of the quinoline core using structure-activity relationships and structure-based drug design methods led to the discovery of a series of modulators with improved RORγt inhibitory potency and inverse agonism properties.


Bioorganic & Medicinal Chemistry Letters | 2017

6-Substituted quinolines as RORγt inverse agonists

J. Kent Barbay; Maxwell D. Cummings; Marta Cristina Abad; Glenda Castro; Kevin D. Kreutter; David A. Kummer; Umar Maharoof; Cynthia M. Milligan; Rachel Nishimura; Joan Pierce; Celine Schalk-Hihi; John Spurlino; Virginia M. Tanis; Maud Urbanski; Hariharan Venkatesan; Aihua Wang; Craig R. Woods; Ronald L. Wolin; Xiaohua Xue; James P. Edwards; Anne Fourie; Kristi A. Leonard

We identified 6-substituted quinolines as modulators of the retinoic acid receptor-related orphan receptor gamma t (RORγt). The synthesis of this class of RORγt modulators is reported, and optimization of the substituents at the quinoline 6-position that produced compounds with high affinity for the receptor is detailed. This effort identified molecules that act as potent, full inverse agonists in a RORγt-driven cell-based reporter assay. The X-ray crystal structures of two full inverse agonists from this chemical series bound to the RORγt ligand binding domain are disclosed, and we highlight the interaction of a hydrogen-bond acceptor on the 6-position substituent of the inverse agonist with Glu379:NH as a conserved binding contact.


Bioorganic & Medicinal Chemistry Letters | 2015

Diaminopyrimidines, diaminopyridines and diaminopyridazines as histamine H4 receptor modulators

Steven P. Meduna; Kevin L. Tays; Hui Cai; Robin L. Thurmond; Patricia McGovern; Michael David Gaul; Bao-Ping Zhao; James P. Edwards

Previously disclosed H4 receptor modulators, the triamino substituted pyridines and pyrimidines, contain a free primary amino (-NH2) group. In this Letter we demonstrate that an exocyclic amine (NH2) is not needed to maintain affinity, and also show a significant divergence in the SAR of the pendant diamine component. These des-NH2 azacycles also show a distinct functional spectrum, that appears to be influenced by the diamine component; in the case of the 1,3-amino pyrimidines, the preferred diamine is the amino pyrrolidine instead of the more common piperazines. Finally, we introduce 3,5-diamino pyridazines as novel histamine H4 antagonists.


Bioorganic & Medicinal Chemistry Letters | 2014

The effect of pKa on pyrimidine/pyridine-derived histamine H4 ligands

Steven P. Meduna; Jennifer D. Venable; Jianmei Wei; Russell C. Smith; Michael D. Hack; Robin L. Thurmond; Patricia McGovern; James P. Edwards

During the course of our efforts toward the discovery of human histamine H4 antagonists from a series of 2-aminiopyrimidines, it was noted that a 6-trifluoromethyl group dramatically reduced affinity of the series toward the histamine H4 receptor. This observation was further investigated by synthesizing a series of ligands that varied in pKa of the pyrimidine derived H4 ligands by over five orders of magnitude and the effect on histamine H4 affinity. This trend was then extended to the discovery of C-linked piperidinyl-2-amino pyridines as histamine H4 receptor antagonists.


eLife | 2018

Science Forum: Donated chemical probes for open science

Susanne Müller; Suzanne Ackloo; C.H. Arrowsmith; Marcus Bauser; Jeremy L Baryza; Julian Blagg; Jark Böttcher; C. Bountra; Peter J. Brown; Mark E Bunnage; Adrian Carter; David R Damerell; Volker Dötsch; David H. Drewry; A. Edwards; James P. Edwards; Jon M Elkins; Christian Fischer; Stephen V. Frye; Andreas Gollner; Charles E Grimshaw; Adriaan P. Ijzerman; Thomas Hanke; Ingo Hartung; Steve Hitchcock; Trevor Howe; Terry V Hughes; Stefan Laufer; Volkhart Mj Li; Spiros Liras

Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project.


Organic Letters | 2018

Minisci-Photoredox-Mediated α-Heteroarylation of N-Protected Secondary Amines: Remarkable Selectivity of Azetidines

Cyril Bosset; Hélène Beucher; Guillaume Bretel; Elisabeth Pasquier; Laurence Queguiner; Cyril Henry; Ann Vos; James P. Edwards; Lieven Meerpoel; Didier Berthelot

The development of a general, mild, and functional-group-tolerant direct functionalization of N-heteroarenes by C-H functionalization with N-protected amines, including azetidines under Minisci-mediated photoredox conditions, is reported. A broad scope of substituted azetidines, including spirocyclic derivatives, and heterocycles were explored. This reaction enables the production of sp3-rich complex druglike structures in one step from unactivated feedstock amines and heterocycles.


Cancer Research | 2017

Abstract DDT02-04: A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models

Dirk Brehmer; Tongfei Wu; Geert Mannens; Lijs Beke; Petra Vinken; Dana Gaffney; Weimei Sun; Vineet Pande; Jan-Willem Thuring; Hillary Millar; Italo Poggesi; Ivan Somers; An Boeckx; Marc Parade; Erika van Heerde; Thomas Nys; Carol Yanovich; Barbara Herkert; Tinne Verhulst; Marc Du Jardin; Lieven Meerpoel; Christopher Moy; Gaston Diels; Marcel Viellevoye; Wim Schepens; Alain Philippe Poncelet; Joannes Theodorus Maria Linders; Edward Charles Lawson; James P. Edwards; Dushen Chetty

PRMT5 is a type II methyltransferase that specifically adds methyl groups to arginine as a long-lasting post-translational modification. The PRMT5/MEP50 complex regulates a plethora of cellular processes, such as epigenetics and splicing, which are notable events involved in tumorigenesis. Although not frequently mutated or amplified in tumors, elevated PRMT5 protein levels in lung and hematologic cancers are correlated with poorer survival. The PRMT5 inhibitor JNJ-64619178 has been selected as a clinical candidate based on its high selectivity and potency (subnanomolar range) under different in vitro and cellular conditions, paired with favorable pharmacokinetics and safety properties. JNJ-64619178 binds into the SAM binding pocket and reaches the substrate binding pocket to inhibit PRMT5/MEP50 function in a time-dependent manner. Broad cell line panel profiling of JNJ-64619178 revealed a wide range of sensitivity, which is indicative of a genomic dependency instead of a general cytotoxic on-target consequence of PRMT5 inhibition. Further investigations indicate a synthetic lethal correlation between PRMT5 inhibition and key cancer driver pathways. JNJ-64619178, dosed orally (10 mg/kg, every day), showed selective and efficient blockage of the methylation of SMD1/3 proteins, which are crucial components of the spliceosome and substrates of PRMT5/MEP50. JNJ-64619178 also demonstrated tumor regression in a biomarker-driven human small cell lung cancer xenograft model (NCI-H1048) and prolonged tumor growth inhibition after dosing cessation. In rodent and nonrodent toxicology studies, a tolerated dose of JNJ-64619178 has been identified, with the observed toxicity consistent with on-target activity. In summary, JNJ-64619178 has a favorable preclinical package that supports clinical testing in patients diagnosed with lung cancer and hematologic malignancies. Citation Format: Dirk Brehmer, Tongfei Wu, Geert Mannens, Lijs Beke, Petra Vinken, Dana Gaffney, Weimei Sun, Vineet Pande, Jan-Willem Thuring, Hillary Millar, Italo Poggesi, Ivan Somers, An Boeckx, Marc Parade, Erika van Heerde, Thomas Nys, Carol Yanovich, Barbara Herkert, Tinne Verhulst, Marc Du Jardin, Lieven Meerpoel, Christopher Moy, Gaston Diels, Marcel Viellevoye, Wim Schepens, Alain Poncelet, Joannes T. Linders, Edward C. Lawson, James P. Edwards, Dushen Chetty, Sylvie Laquerre, Matthew V. Lorenzi. A novel PRMT5 inhibitor with potent in vitro and in vivo activity in preclinical lung cancer models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr DDT02-04. doi:10.1158/1538-7445.AM2017-DDT02-04


Archive | 2007

Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine h4 receptor

James P. Edwards; David E. Kindrachuk; Christopher M. Mapes; Daniel J. Pippel; Jennifer D. Venable

Collaboration


Dive into the James P. Edwards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge