Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Lodolce is active.

Publication


Featured researches published by James P. Lodolce.


Immunity | 1998

IL-15 Receptor Maintains Lymphoid Homeostasis by Supporting Lymphocyte Homing and Proliferation

James P. Lodolce; David L. Boone; Sophia Chai; Rachel E. Swain; Themistocles Dassopoulos; Shanthi Trettin; Averil Ma

The IL-15 receptor alpha subunit (IL-15Ralpha) mediates high-affinity binding of IL-15, a pleiotropic cytokine implicated in the development of innate immune cells. We have generated IL-15Ralpha null (IL-15Ralpha-/-) mice to understand the role of IL-15Ralpha in immune development and function. IL-15Ralpha-/- mice are markedly lymphopenic despite grossly normal T and B lymphocyte development. This lymphopenia is due to decreased proliferation and decreased homing of IL-15Ralpha-/- lymphocytes to peripheral lymph nodes. These mice are also deficient in natural killer cells, natural killer T cells, CD8+ T lymphocytes, and TCRgammadelta intraepithelial lymphocytes. In addition, memory phenotype CD8+ T cells are selectively reduced in number. Thus, IL-15Ralpha has pleiotropic roles in immune development and function, including the positive maintenance of lymphocyte homeostasis.


Journal of Experimental Medicine | 2003

Interleukin (IL)-15Rα–deficient Natural Killer Cells Survive in Normal but Not IL-15Rα–deficient Mice

Rima Koka; Patrick R. Burkett; Marcia Chien; Sophia Chai; Faye Chan; James P. Lodolce; David L. Boone; Averil Ma

Natural killer (NK) cells protect hosts against viral pathogens and transformed cells. IL-15 is thought to play a critical role in NK cell development, but its role in the regulation of peripheral NK cells is less well defined. We now find that adoptive transfer of normal NK cells into mice lacking the high affinity interleukin (IL)-15 receptor, IL-15Rα, surprisingly results in the abrupt loss of these cells. Moreover, IL-15Rα–deficient NK cells can differentiate successfully in radiation bone marrow chimera bearing normal cells. Finally, adoptively transferred IL-15Rα–deficient NK cells survive in normal but not IL-15Rα–deficient mice. These findings demonstrate that NK cell–independent IL-15Rα expression is critical for maintaining peripheral NK cells, while IL-15Rα expression on NK cells is not required for this function.


Journal of Experimental Medicine | 2000

The Pleiotropic Functions of Interleukin 15: Not So Interleukin 2-like After All

Averil Ma; David L. Boone; James P. Lodolce

Since its discovery in 1994, IL-15 has been studied in the context of its structural cousin, IL-2 ([1][1]). Early biochemical and in vitro lymphocyte studies revealed many similarities between IL-15 and IL-2: (a) IL-2 and IL-15 constitute the only two members of a family of cytokines containing a


Cytokine & Growth Factor Reviews | 2002

Regulation of lymphoid homeostasis by interleukin-15

James P. Lodolce; Patrick R. Burkett; Rima Koka; David L. Boone; Averil Ma

Interleukin (IL)-15 is a member of the common gamma chain family of cytokines, and is closely related to IL-2. While these two cytokines share several important biological functions in vitro, recent mouse models have demonstrated unique roles for these two cytokines in supporting lymphoid homeostasis in vivo. IL-15 has been shown to regulate the homeostasis of both innate and adaptive immune cells, and this review will discuss several ways in which this pleiotropic cytokine may support lymphoid homeostasis.


Journal of Immunology | 2010

African-Derived Genetic Polymorphisms in TNFAIP3 Mediate Risk for Autoimmunity

James P. Lodolce; Lauren Kolodziej; Lesley Rhee; Silvia N. Kariuki; Beverly S. Franek; Nancy McGreal; Mark Logsdon; Sarah Bartulis; Minoli A. Perera; Nathan A. Ellis; Erin J. Adams; Stephen B. Hanauer; Meenakshi Jolly; Timothy B. Niewold; David L. Boone

The TNF α-induced protein 3 (TNFAIP3) is an ubiquitin-modifying enzyme and an essential negative regulator of inflammation. Genome-wide association studies have implicated the TNFAIP3 locus in susceptibility to autoimmune disorders in European cohorts, including rheumatoid arthritis, coronary artery disease, psoriasis, celiac disease, type 1 diabetes, inflammatory bowel disease, and systemic lupus erythematosus (SLE). There are two nonsynonymous coding polymorphisms in the deubiquitinating (DUB) domain of TNFAIP3: F127C, which is in high-linkage disequilibrium with reported SLE-risk variants, and A125V, which has not been previously studied. We conducted a case–control study in African-American SLE patients using these coding variants, along with tagging polymorphisms in TNFAIP3, and identified a novel African-derived risk haplotype that is distinct from previously reported risk variants (odds ratio = 1.6, p = 0.006). In addition, a rare protective haplotype was defined by A125V (odds ratio = 0.31, p = 0.027). Although A125V was associated with protection from SLE, surprisingly the same allele was associated with increased risk of inflammatory bowel disease. We tested the functional activity of nonsynonymous coding polymorphisms within TNFAIP3, and found that the A125V coding-change variant alters the DUB activity of the protein. Finally, we used computer modeling to depict how the A125V amino acid change in TNFAIP3 may affect the three-dimensional structure of the DUB domain to a greater extent than F127C. This is the first report of an association between TNFAIP3 polymorphisms and autoimmunity in African-Americans.


Molecular Immunology | 2002

Interleukin-15 and the regulation of lymphoid homeostasis.

James P. Lodolce; Patrick R. Burkett; Rima Koka; David L. Boone; Marcia Chien; Faye Chan; Michelle Madonia; Sophia Chai; Averil Ma

Interleukin-15 (IL-15) is a cytokine that plays unique roles in both innate and adaptive immune cell homeostasis. While early studies suggested that IL-15 resembled IL-2, more recent work suggests that IL-15 may play multiple unique roles in immune homeostasis befitting its pleiotropic expression pattern. This review will focus on recent studies that highlight some of these functions.


PLOS ONE | 2011

TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

Lauren Kolodziej; James P. Lodolce; Jonathan E. Chang; Jeffrey R. Schneider; Wesley Grimm; Sarah Bartulis; Xiaorong Zhu; Jeannette S. Messer; Stephen F. Murphy; Nishith Reddy; Jerrold R. Turner; David L. Boone

Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohns disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation.


Gut | 2016

The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon

Wesley Grimm; Jeannette S. Messer; Stephen F. Murphy; Thomas M. Nero; James P. Lodolce; Christopher R. Weber; Mark Logsdon; Sarah Bartulis; Brooke E. Sylvester; Amanda Springer; Urszula Dougherty; Timothy B. Niewold; Sonia S. Kupfer; Nathan A. Ellis; Dezheng Huo; Marc Bissonnette; David L. Boone

Objective ATG16L1 is an autophagy gene known to control host immune responses to viruses and bacteria. Recently, a non-synonymous single-nucleotide polymorphism in ATG16L1 (Thr300Ala), previously identified as a risk factor in Crohns disease (CD), was associated with more favourable clinical outcomes in thyroid cancer. Mechanisms underlying this observation have not been proposed, nor is it clear whether an association between Thr300Ala and clinical outcomes will be observed in other cancers. We hypothesised that Thr300Ala influences clinical outcome in human colorectal cancer (CRC) and controls innate antiviral pathways in colon cancer cells. Design We genotyped 460 patients with CRC and assessed for an association between ATG16L1 Thr300Ala and overall survival and clinical stage. Human CRC cell lines were targeted by homologous recombination to examine the functional consequence of loss of ATG16L1, or introduction of the Thr300Ala variant. Results We found an association between longer overall survival, reduced metastasis and the ATG16L1 Ala/Ala genotype. Tumour sections from ATG16L1 Ala/Ala patients expressed elevated type I interferons (IFN-I)-inducible, MxA, suggesting that differences in cytokine production may influence disease progression. When introduced into human CRC cells by homologous recombination, the Thr300Ala variant did not affect bulk autophagy, but increased basal production of type I IFN. Introduction of Thr300Ala resulted in increased sensitivity to the dsRNA mimic poly(I:C) through a mitochondrial antiviral signalling (MAVS)-dependent pathway. Conclusions The CD-risk allele, Thr300Ala, in ATG16L1 is associated with improved overall survival in human CRC, generating a rationale to genotype ATG16L1 Thr300Ala in patients with CRC. We found that Thr300A alters production of MAVS-dependent type I IFN in CRC cells, providing a mechanism that may influence clinical outcomes.


Biochemical and Biophysical Research Communications | 2010

The role of anthrolysin O in gut epithelial barrier disruption during Bacillus anthracis infection

Brian L. Bishop; James P. Lodolce; Lauren Kolodziej; David L. Boone; Wei-Jen Tang

Gastrointestinal (GI) anthrax, caused by the bacterial infection of Bacillus anthracis, posts a significant bioterrorism threat by its relatively high mortality rate in humans. Different from inhalational anthrax by the route of infection, accumulating evidence indicates the bypass of vegetative bacteria across GI epithelium is required to initiate GI anthrax. Previously, we reported that purified anthrolysin O (ALO), instead of tripartite anthrax edema and lethal toxins, is capable of disrupting gut epithelial tight junctions and barrier function in cultured cells. Here, we show that ALO can disrupt intestinal tissue barrier function in an ex vivo mouse model. To explore the effects of ALO in a cell culture model of B. anthracis infection, we showed that anthrax bacteria can effectively reduce the monolayer integrity of human Caco-2 brush-border expressor (C2BBE) cells based on the reduced transepithelial resistance and the increased leakage of fluorescent dye. This disruption is likely caused by tight junction dysfunction observed by the reorganization of the tight junction protein occludin. Consequently, we observe significant passage of vegetative anthrax bacteria across C2BBE cells. This barrier disruption and bacterial crossover requires ALO since ALO-deficient B. anthracis strains fail to induce monolayer dysfunction and allow the passage of anthrax bacteria. Together these findings point to a pivotal role for ALO within the establishment of GI anthrax infection and the initial bypass of the epithelial barrier.


BMJ Open | 2013

The Crohn's disease: associated ATG16L1 variant and Salmonella invasion

Jeannette S. Messer; Stephen F. Murphy; Mark Logsdon; James P. Lodolce; Wesley Grimm; Sarah Bartulis; Tiphanie P. Vogel; Melisa Burn; David L. Boone

Objective A common genetic coding variant in the core autophagy gene ATG16L1 is associated with increased susceptibility to Crohns disease (CD). The variant encodes an amino acid change in ATG16L1 such that the threonine at position 300 is substituted with an alanine (ATG16L1 T300A). How this variant contributes to increased risk of CD is not known, but studies with transfected cell lines and gene-targeted mice have demonstrated that ATG16L1 is required for autophagy, control of interleukin-1-β and autophagic clearance of intracellular microbes. In addition, studies with human cells expressing ATG16L1 T300A indicate that this variant reduces the autophagic clearance of intracellular microbes. Design/Results We demonstrate, using somatically gene-targeted human cells that the ATG16L1 T300A variant confers protection from cellular invasion by Salmonella. In addition, we show that ATG16L1-deficient cells are resistant to bacterial invasion. Conclusions These results suggest that cellular expression of ATG16L1 facilitates bacterial invasion and that the CD-associated ATG16L1 T300A variant may confer protection from bacterial infection.

Collaboration


Dive into the James P. Lodolce's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Averil Ma

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Themistocles Dassopoulos

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge