Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. Luyendyk is active.

Publication


Featured researches published by James P. Luyendyk.


Journal of Pharmacology and Experimental Therapeutics | 2011

Differential Roles of Unsaturated and Saturated Fatty Acids on Autophagy and Apoptosis in Hepatocytes

Shuang Mei; Hong-Min Ni; Sharon Manley; Abigail Bockus; Karen M. Kassel; James P. Luyendyk; Bryan L. Copple; Wen-Xing Ding

Fatty acid-induced lipotoxicity plays a critical role in the pathogenesis of nonalcoholic liver disease. Saturated fatty acids and unsaturated fatty acids have differential effects on cell death and steatosis, but the mechanisms responsible for these differences are not known. Using cultured HepG2 cells and primary mouse hepatocytes, we found that unsaturated and saturated fatty acids differentially regulate autophagy and apoptosis. The unsaturated fatty acid, oleic acid, promoted the formation of triglyceride-enriched lipid droplets and induced autophagy but had a minimal effect on apoptosis. In contrast, the saturated fatty acid, palmitic acid, was poorly converted into triglyceride-enriched lipid droplets, suppressed autophagy, and significantly induced apoptosis. Subsequent studies revealed that palmitic acid-induced apoptosis suppressed autophagy by inducing caspase-dependent Beclin 1 cleavage, indicating cross-talk between apoptosis and autophagy. Moreover, our data suggest that the formation of triglyceride-enriched lipid droplets and induction of autophagy are protective mechanisms against fatty acid-induced lipotoxicity. In line with our in vitro findings, we found that high-fat diet-induced hepatic steatosis was associated with autophagy in the mouse liver. Potential modulation of autophagy may be a novel approach that has therapeutic benefits for obesity-induced steatosis and liver injury.


Journal of Immunology | 2008

Genetic Analysis of the Role of the PI3K-Akt Pathway in Lipopolysaccharide-Induced Cytokine and Tissue Factor Gene Expression in Monocytes/Macrophages

James P. Luyendyk; Gernot Schabbauer; Michael Tencati; Todd Holscher; Rafal Pawlinski; Nigel Mackman

LPS stimulation of monocytes/macrophages induces the expression of genes encoding proinflammatory cytokines and the procoagulant protein, tissue factor. Induction of these genes is mediated by various signaling pathways, including mitogen-activated protein kinases, and several transcription factors, including Egr-1, AP-1, ATF-2, and NF-κB. We used a genetic approach to determine the role of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway in the regulation of LPS signaling and gene expression in isolated macrophages and in mice. The PI3K-Akt pathway is negatively regulated by the phosphatase and tensin homologue (PTEN). We used peritoneal exudate cells from Pik3r1-deficient mice, which lack the p85α regulatory subunit of PI3K and have reduced PI3K activity, and peritoneal macrophages from PTENflox/flox/LysMCre mice (PTEN−/−), which have increased Akt activity. Analysis of LPS signaling in Pik3r1−/− and PTEN−/− cells indicated that the PI3K-Akt pathway inhibited activation of the ERK1/2, JNK1/2, and p38 mitogen-activated protein kinases and reduced the levels of nuclear Egr-1 protein and phosphorylated ATF-2. Modulating the PI3K-Akt pathway did not affect LPS-induced degradation of IκBα or NF-κB nuclear translocation. LPS induction of TNF-α, IL-6, and tissue factor gene expression was increased in Pik3r1−/− peritoneal exudate cells and decreased in PTEN−/− peritoneal macrophages compared with wild-type (WT) cells. Furthermore, LPS-induced inflammation and coagulation were enhanced in WT mice containing Pik3r1−/− bone marrow compared with WT mice containing WT bone marrow and in mice lacking the p85α subunit in all cells. Taken together, our results indicate that the PI3K-Akt pathway negatively regulates LPS signaling and gene expression in monocytes/macrophages.


Journal of Pharmacology and Experimental Therapeutics | 2009

Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

Bo Kong; James P. Luyendyk; Ossama Tawfik; Grace L. Guo

Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr-/-) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr-/- mice. In contrast, in the livers of LDLr-/-/FXR-/- mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor α and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr-/-/FXR-/- mice. In agreement with elevated levels of procollagen 1α1 and TGF-β mRNA, type 1 collagen protein levels were increased in livers of LDLr-/-/FXR-/- mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.


Journal of Pharmacology and Experimental Therapeutics | 2006

Modest Inflammation Enhances Diclofenac Hepatotoxicity in Rats: Role of Neutrophils and Bacterial Translocation

Xiaomin Deng; Robert F. Stachlewitz; Michael J. Liguori; Eric A. G. Blomme; Jefferey F Waring; James P. Luyendyk; Jane F. Maddox; Patricia E. Ganey; Robert A. Roth

Idiosyncratic adverse drug reactions (IADRs) represent an important human health problem, yet animal models for preclinical prediction of these reactions are lacking. Recent evidence in animals suggests that some IADRs arise from drug interaction with an inflammatory episode that renders the liver sensitive to injury. Diclofenac (DCLF) is one of those drugs for which the clinical use is limited by idiosyncratic liver injury. We tested the hypothesis that modest inflammation triggered in rats by a small dose of lipopolysaccharide (LPS) renders a nonhepatotoxic dose of DCLF injurious to liver. Cotreatment of rats with nonhepatotoxic doses of LPS and DCLF resulted in elevated serum alanine aminotransferase activity and liver histopathologic changes 6 h after DCLF administration. Neither LPS nor DCLF alone had such an effect. Gene array analysis of livers revealed a unique gene expression pattern in the LPS/DCLF-cotreated group compared with groups given either agent alone. Antiserum-induced neutrophil (PMN) depletion in LPS/DCLF-cotreated rats protected against liver injury, demonstrating a role for PMNs in the pathogenesis of this LPS/DCLF interaction. Gut sterilization of LPS/DCLF-treated rats did not protect against liver injury. In contrast, gut sterilization did attenuate liver injury caused by a large, hepatotoxic dose of DCLF, suggesting that hepatotoxicity induced by large doses of DCLF is caused in part by its ability to increase intestinal permeability to endotoxin or other bacterial products. These results demonstrate that inflammation-DCLF interaction precipitates hepatotoxicity in rats and raise the possibility of creating animal models that predict human IADRs.


Journal of Clinical Investigation | 2012

Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin.

A. Phillip Owens; Freda Passam; Silvio Antoniak; Stephanie M. Marshall; Allison L. McDaniel; Lawrence L. Rudel; Julie C. Williams; Brian K. Hubbard; Julie Ann Dutton; Jianguo Wang; Peter S. Tobias; Linda K. Curtiss; Alan Daugherty; Daniel Kirchhofer; James P. Luyendyk; Patrick M. Moriarty; Shanmugam Nagarajan; Barbara C. Furie; Bruce Furie; Douglas G. Johns; Ryan E. Temel; Nigel Mackman

Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor-deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex.


Journal of Pharmacology and Experimental Therapeutics | 2005

Microarray analysis of lipopolysaccharide potentiation of trovafloxacin-induced liver injury in rats suggests a role for proinflammatory chemokines and neutrophils

Jeffrey F. Waring; Michael J. Liguori; James P. Luyendyk; Jane F. Maddox; Patricia E. Ganey; Robert F. Stachlewitz; Colin M. North; Eric A. G. Blomme; Robert A. Roth

Idiosyncratic drug toxicity refers to toxic reactions occurring in a small subset of patients and usually cannot be predicted during preclinical or early phases of clinical trials. One hypothesis for the pathogenesis of hepatic idiosyncratic drug reactions is that, in certain individuals, underlying inflammation results in sensitization of the liver, such that injury occurs from an agent that typically would not cause hepatotoxicity at a therapeutic dose. We explored this possibility by cotreating rats with nonhepatotoxic doses of bacterial lipopolysaccharide (LPS) and trovafloxacin (TVX), a drug that caused idiosyncratic hepatotoxicity in humans. The combination of LPS and TVX resulted in hepatotoxicity in rats, as determined by increases in serum alanine aminotransferase activity and hepatocellular necrosis, which were not observed with either agent alone. In contrast, treatment with LPS and levofloxacin, a fluoroquinolone without human idiosyncratic liability, did not result in these changes. Liver gene expression analysis identified unique changes induced by the combination of TVX and LPS, including enhanced expression of chemokines, suggestive of liver neutrophil (PMN) accumulation and activation. Consistent with a role for PMN in the hepatotoxicity induced by LPS/TVX, prior depletion of PMN attenuated the liver injury. The results suggest that gene expression profiles predictive of idiosyncratic liability can be generated in rats cotreated with LPS and drug. Furthermore, they identify gene expression changes that could be explored as biomarkers for idiosyncratic toxicity and lead to enhanced understanding of the mechanism(s) underlying hepatotoxicity induced by TVX.


Pharmacological Reviews | 2009

Inflammatory Stress and Idiosyncratic Hepatotoxicity: Hints from Animal Models

Xiaomin Deng; James P. Luyendyk; Patricia E. Ganey; Robert A. Roth

Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as “idiosyncratic.” Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.


Hepatology | 2007

Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice†

Patricia E. Ganey; James P. Luyendyk; Sandra W. Newport; Theresa M. Eagle; Jane F. Maddox; Nigel Mackman; Robert A. Roth

Acetaminophen (N‐acetyl‐p‐aminophenol [APAP]) is one of the leading causes of acute liver failure, and APAP hepatotoxicity is associated with coagulopathy in humans. We tested the hypothesis that activation of the coagulation system and downstream protease‐activated receptor (PAR)‐1 signaling contribute to APAP‐induced liver injury. Fasted C57BL/J6 mice were treated with either saline or APAP (400 mg/kg intraperitoneally) and were euthanized 0.5‐24 hours later. Hepatotoxicity and coagulation system activation occurred by 2 hours after administration of APAP. Treatment with APAP also caused a rapid and transient increase in liver procoagulant activity. In addition, significant deposition of fibrin was observed in the liver by 2 hours, and the concentration of plasminogen activator inhibitor‐1 in plasma increased between 2 and 6 hours. Pretreatment with heparin attenuated the APAP‐induced activation of the coagulation system and hepatocellular injury and diminished hepatic fibrin deposition at 6 hours. Loss of hepatocellular glutathione was similar in APAP‐treated mice pretreated with saline or heparin, suggesting that heparin did not diminish bioactivation of APAP. In mice deficient in tissue factor, the principal cellular activator of coagulation, APAP‐induced liver injury, activation of coagulation, and hepatic fibrin deposition were reduced at 6 hours. Formation of the tissue factor–factor VIIa complex leads to the generation of thrombin that can activate cells through cleavage of PAR‐1. Mice lacking PAR‐1 developed less injury and hepatic fibrin deposits at 6 hours in response to APAP than control mice. Conclusion: Activation of the coagulation system and PAR‐1 signaling contribute significantly to APAP‐induced liver injury. (HEPATOLOGY 2007.)


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Contribution of Host-Derived Tissue Factor to Tumor Neovascularization

Joanne Yu; Linda May; Chloe Milsom; G. Mark Anderson; Jeffrey I. Weitz; James P. Luyendyk; George J. Broze; Nigel Mackman; Janusz Rak

Objective—The role of host-derived tissue factor (TF) in tumor growth, angiogenesis, and metastasis has hitherto been unclear and was investigated in this study. Methods and Results—We compared tumor growth, vascularity, and responses to cyclophosphamide (CTX) of tumors in wild-type (wt) mice, or in animals with TF levels reduced by 99% (low-TF mice). Global growth rate of 3 different types of transplantable tumors (LLC, B16F1, and ES teratoma) or metastasis were unchanged in low-TF mice. However, several unexpected tumor/context-specific alterations were observed in these mice, including: (1) reduced tumor blood vessel size in B16F1 tumors; (2) larger spleen size and greater tolerance to CTX toxicity in the LLC model; (3) aborted tumor growth after inoculation of TF-deficient tumor cells (ES TF−/−) in low-TF mice. TF-deficient tumor cells grew readily in mice with normal TF levels and attracted exclusively host-related blood vessels (without vasculogenic mimicry). We postulate that this complementarity may result from tumor-vascular transfer of TF-containing microvesicles, as we observed such transfer using human cancer cells (A431) and mouse endothelial cells, both in vitro and in vivo. Conclusions—Our study points to an important but context-dependent role of host TF in tumor formation, angiogenesis and therapy.


Journal of Clinical Investigation | 2013

PAR-1 contributes to the innate immune response during viral infection

Silvio Antoniak; A. Phillip Owens; Martin Baunacke; Julie C. Williams; Rebecca D. Lee; Alice Weithäuser; Patricia A. Sheridan; Ronny Malz; James P. Luyendyk; Denise A. Esserman; Jo Ann Trejo; Daniel Kirchhofer; Burns C. Blaxall; Rafal Pawlinski; Melinda A. Beck; Ursula Rauch; Nigel Mackman

Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3-induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1(-/-) mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1(+/+) mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1(-/-) mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1(+/+) mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection.

Collaboration


Dive into the James P. Luyendyk's collaboration.

Top Co-Authors

Avatar

Nigel Mackman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Robert A. Roth

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Anna K. Kopec

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen M. Kassel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nikita Joshi

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jane F. Maddox

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge