James P. Malone
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James P. Malone.
Nucleic Acids Research | 2009
Helen E. Parkinson; Misha Kapushesky; Nikolay Kolesnikov; Gabriella Rustici; Mohammadreza Shojatalab; Niran Abeygunawardena; Hugo Bérubé; Miroslaw Dylag; Ibrahim Emam; Anna Farne; Ele Holloway; Margus Lukk; James P. Malone; Roby Mani; Ekaterina Pilicheva; Tim F. Rayner; Faisal Ibne Rezwan; Anjan Sharma; Eleanor Williams; Xiangqun Zheng Bradley; Tomasz Adamusiak; Marco Brandizi; Tony Burdett; Richard M. R. Coulson; Maria Krestyaninova; Pavel Kurnosov; Eamonn Maguire; Sudeshna Guha Neogi; Philippe Rocca-Serra; Susanna-Assunta Sansone
ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository—a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse—a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas—a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200 000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently—ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.
Biological Psychiatry | 2010
Rebecca Craig-Schapiro; Richard J. Perrin; Catherine M. Roe; Chengjie Xiong; Deborah Carter; Nigel J. Cairns; Mark A. Mintun; Elaine R. Peskind; Ge Li; Douglas Galasko; Christopher M. Clark; Joseph F. Quinn; Gina D'Angelo; James P. Malone; R. Reid Townsend; John C. Morris; Anne M. Fagan; David M. Holtzman
BACKGROUND Disease-modifying therapies for Alzheimers disease (AD) would be most effective during the preclinical stage (pathology present, cognition intact) before significant neuronal loss occurs. Therefore, biomarkers that detect AD pathology in its early stages and predict dementia onset and progression will be invaluable for patient care and efficient clinical trial design. METHODS AD-associated changes in cerebrospinal fluid (CSF) were measured using two-dimensional difference gel electrophoresis and liquid chromatography tandem mass spectrometry. Subsequently, CSF YKL-40 was measured by enzyme-linked immunosorbent assay in the discovery cohort (n = 47), validation cohort (n = 292) with paired plasma samples (n = 237), frontotemporal lobar degeneration (n=9) [corrected], and progressive supranuclear palsy (PSP; n = 6). Immunohistochemistry was performed to identify source(s) of YKL-40 in human AD brain. RESULTS Discovery and validation cohorts, showed higher mean CSF YKL-40 in very mild and mild AD-type dementia (Clinical Dementia Rating [CDR] 0.5 and 1) versus control subjects (CDR 0) and PSP subjects. Importantly, CSF YKL-40/Aβ42 ratio predicted risk of developing cognitive impairment (CDR 0 to CDR > 0 conversion), as well as the best CSF biomarkers identified to date, tau/Aβ42 and p-tau 181/Aβ42. Mean plasma YKL-40 was higher in CDR 0.5 and 1 versus CDR 0, and correlated with CSF levels. YKL-40 immunoreactivity labeled astrocytes near a subset of amyloid plaques, implicating YKL-40 in the neuroinflammatory response to Aβ deposition. CONCLUSIONS These data demonstrate that YKL-40, a putative indicator of neuroinflammation, is elevated in AD and, together with Aβ42, has potential prognostic utility as a biomarker for preclinical AD.
Nucleic Acids Research | 2014
Robert Petryszak; Tony Burdett; Benedetto Fiorelli; Nuno A. Fonseca; Mar Gonzàlez-Porta; Emma Hastings; Wolfgang Huber; Simon Jupp; Maria Keays; Nataliya Kryvych; Julie McMurry; John C. Marioni; James P. Malone; Karine Megy; Gabriella Rustici; Amy Tang; Jan Taubert; Eleanor Williams; Oliver Mannion; Helen Parkinson; Alvis Brazma
Expression Atlas (http://www.ebi.ac.uk/gxa) is a value-added database providing information about gene, protein and splice variant expression in different cell types, organism parts, developmental stages, diseases and other biological and experimental conditions. The database consists of selected high-quality microarray and RNA-sequencing experiments from ArrayExpress that have been manually curated, annotated with Experimental Factor Ontology terms and processed using standardized microarray and RNA-sequencing analysis methods. The new version of Expression Atlas introduces the concept of ‘baseline’ expression, i.e. gene and splice variant abundance levels in healthy or untreated conditions, such as tissues or cell types. Differential gene expression data benefit from an in-depth curation of experimental intent, resulting in biologically meaningful ‘contrasts’, i.e. instances of differential pairwise comparisons between two sets of biological replicates. Other novel aspects of Expression Atlas are its strict quality control of raw experimental data, up-to-date RNA-sequencing analysis methods, expression data at the level of gene sets, as well as genes and a more powerful search interface designed to maximize the biological value provided to the user.
Nucleic Acids Research | 2012
Misha Kapushesky; Tomasz Adamusiak; Tony Burdett; Aedín C. Culhane; Anna Farne; Alexey Filippov; Ele Holloway; Andrey Klebanov; Nataliya Kryvych; Natalja Kurbatova; Pavel Kurnosov; James P. Malone; Olga Melnichuk; Robert Petryszak; Nikolay Pultsin; Gabriella Rustici; Andrew Tikhonov; Ravensara S. Travillian; Eleanor Williams; Andrey Zorin; Helen E. Parkinson; Alvis Brazma
Gene Expression Atlas (http://www.ebi.ac.uk/gxa) is an added-value database providing information about gene expression in different cell types, organism parts, developmental stages, disease states, sample treatments and other biological/experimental conditions. The content of this database derives from curation, re-annotation and statistical analysis of selected data from the ArrayExpress Archive and the European Nucleotide Archive. A simple interface allows the user to query for differential gene expression either by gene names or attributes or by biological conditions, e.g. diseases, organism parts or cell types. Since our previous report we made 20 monthly releases and, as of Release 11.08 (August 2011), the database supports 19 species, which contains expression data measured for 19 014 biological conditions in 136 551 assays from 5598 independent studies.
PLOS ONE | 2011
Richard J. Perrin; Rebecca Craig-Schapiro; James P. Malone; Aarti R. Shah; Petra Gilmore; Alan E. Davis; Catherine M. Roe; Elaine R. Peskind; Ge Li; Douglas Galasko; Christopher M. Clark; Joseph F. Quinn; Jeffrey Kaye; John C. Morris; David M. Holtzman; R. Reid Townsend; Anne M. Fagan
Background Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the ‘preclinical’ stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome. Methods and Findings CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85–0.94 95% confidence interval [CI]) and 0.88 (0.81–0.94 CI), respectively. Conclusions Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions.
Molecular & Cellular Proteomics | 2005
Yan Hu; James P. Malone; Anne M. Fagan; Raymond R. Townsend; David M. Holtzman
Cerebrospinal fluid (CSF) is a potential source of biomarkers for many disorders of the central nervous system, including Alzheimer disease (AD). Prior to comparing CSF samples between individuals to identify patterns of disease-associated proteins, it is important to examine variation within individuals over a short period of time so that one can better interpret potential changes in CSF between individuals as well as changes within a given individual over a longer time span. In this study, we analyzed 12 CSF samples, composed of pairs of samples from six individuals, obtained 2 weeks apart. Multiaffinity depletion, two-dimensional DIGE, and tandem mass spectrometry were used. A number of proteins whose abundance varied between the two time points was identified for each individual. Some of these proteins were commonly identified in multiple individuals. More importantly, despite the intraindividual variations, hierarchical clustering and multidimensional scaling analysis of the proteomic profiles revealed that two CSF samples from the same individual cluster the closest together and that the between-subject variability is much larger than the within-subject variability. Among the six subjects, comparison between the four cognitively normal and the two very mildly demented subjects also yielded some proteins that have been identified in previous AD biomarker studies. These results validate our method of identifying differences in proteomic profiles of CSF samples and have important implications for the design of CSF biomarker studies for AD and other central nervous system disorders.
PLOS ONE | 2016
Anita Bandrowski; Ryan R. Brinkman; Mathias Brochhausen; Matthew H. Brush; Bill Bug; Marcus C. Chibucos; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran; Melissa Haendel; Yongqun He; Mervi Heiskanen; Tina Hernandez-Boussard; Mark Jensen; Yu Lin; Allyson L. Lister; Phillip Lord; James P. Malone; Elisabetta Manduchi; Monnie McGee; Norman Morrison; James A. Overton; Helen Parkinson; Bjoern Peters
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2009
Bryce A. Mendelsohn; James P. Malone; R. Reid Townsend; Jonathan D. Gitlin
While some species and tissue types are injured by oxygen deprivation, anoxia tolerant organisms display a protective response that has not been fully elucidated and is well-suited to genomic and proteomic analysis. However, such methodologies have focused on transcriptional responses, prolonged anoxia, or have used cultured cells or isolated tissues. In this study of intact zebrafish embryos, a species capable of >24 h survival in anoxia, we have utilized 2D difference in gel electrophoresis to identify changes in the proteomic profile caused by near-lethal anoxic durations as well as acute anoxia (1 h), a timeframe relevant to ischemic events in human disease when response mechanisms are largely limited to post-transcriptional and post-translational processes. We observed a general stabilization of the proteome in anoxia. Proteins involved in oxidative phosphorylation, antioxidant defense, transcription, and translation changed over this time period. Among the largest proteomic alterations was that of muscle cofilin 2, implicating the regulation of the cytoskeleton and actin assembly in the adaptation to acute anoxia. These studies in an intact embryo highlight proteomic components of an adaptive response to anoxia in a model organism amenable to genetic analysis to permit further mechanistic insight into the phenomenon of anoxia tolerance.
PLOS ONE | 2013
Richard J. Perrin; Jacqueline E. Payton; James P. Malone; Petra Gilmore; Alan E. Davis; Chengjie Xiong; Anne M. Fagan; R. Reid Townsend; David M. Holtzman
Background Biomarkers are required for pre-symptomatic diagnosis, treatment, and monitoring of neurodegenerative diseases such as Alzheimers disease. Cerebrospinal fluid (CSF) is a favored source because its proteome reflects the composition of the brain. Ideal biomarkers have low technical and inter-individual variability (subject variance) among control subjects to minimize overlaps between clinical groups. This study evaluates a process of multi-affinity fractionation (MAF) and quantitative label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) for CSF biomarker discovery by (1) identifying reparable sources of technical variability, (2) assessing subject variance and residual technical variability for numerous CSF proteins, and (3) testing its ability to segregate samples on the basis of desired biomarker characteristics. Methods/Results Fourteen aliquots of pooled CSF and two aliquots from six cognitively normal individuals were randomized, enriched for low-abundance proteins by MAF, digested endoproteolytically, randomized again, and analyzed by nano-LC-MS. Nano-LC-MS data were time and m/z aligned across samples for relative peptide quantification. Among 11,433 aligned charge groups, 1360 relatively abundant ones were annotated by MS2, yielding 823 unique peptides. Analyses, including Pearson correlations of annotated LC-MS ion chromatograms, performed for all pairwise sample comparisons, identified several sources of technical variability: i) incomplete MAF and keratins; ii) globally- or segmentally-decreased ion current in isolated LC-MS analyses; and iii) oxidized methionine-containing peptides. Exclusion of these sources yielded 609 peptides representing 81 proteins. Most of these proteins showed very low coefficients of variation (CV<5%) whether they were quantified from the mean of all or only the 2 most-abundant peptides. Unsupervised clustering, using only 24 proteins selected for high subject variance, yielded perfect segregation of pooled and individual samples. Conclusions Quantitative label-free LC-MS/MS can measure scores of CSF proteins with low technical variability and can segregate samples according to desired criteria. Thus, this technique shows potential for biomarker discovery for neurological diseases.
Molecular & Cellular Proteomics | 2012
Diego M. Morales; R. Reid Townsend; James P. Malone; Carissa A. Ewersmann; Elizabeth Macy; Terrie E. Inder; David D. Limbrick
Neurological outcomes of preterm infants with posthemorrhagic hydrocephalus are among the worst in newborn medicine. There remains no consensus regarding the diagnosis or treatment of posthemorrhagic hydrocephalus, and the pathological pathways leading to the adverse neurological sequelae are poorly understood. In the current study, we developed an innovative approach to simultaneously identify potential diagnostic markers of posthemorrhagic hydrocephalus and investigate novel pathways of posthemorrhagic hydrocephalus-related neurological disability. Tandem multi-affinity fractionation for specific removal of plasma proteins from the hemorrhagic cerebrospinal fluid samples was combined with high resolution label-free quantitative proteomics. Analysis of cerebrospinal fluid obtained from infants with posthemorrhagic hydrocephalus demonstrated marked differences in the levels of 438 proteins when compared with cerebrospinal fluid from age-matched control infants. Amyloid precursor protein, neural cell adhesion molecule-L1, neural cell adhesion molecule-1, brevican and other proteins with important roles in neurodevelopment showed profound elevations in posthemorrhagic hydrocephalus cerebrospinal fluid compared with control. Initiation of neurosurgical treatment of posthemorrhagic hydrocephalus resulted in resolution of these elevations. The results from this foundational study demonstrate the significant promise of tandem multi-affinity fractionation-proteomics in the identification and quantitation of protein mediators of neurodevelopment and neurological injury. More specifically, our results suggest that cerebrospinal fluid levels of proteins such as amyloid precursor protein or neural cell adhesion molecule-L1 should be investigated as potential diagnostic markers of posthemorrhagic hydrocephalus. Notably, dysregulation of the levels these and other proteins may directly affect ongoing neurodevelopmental processes in these preterm infants, providing an entirely new hypothesis for the developmental disability associated with posthemorrhagic hydrocephalus.