Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. McCarter is active.

Publication


Featured researches published by James P. McCarter.


Science | 2007

Draft Genome of the Filarial Nematode Parasite Brugia malayi

Elodie Ghedin; Shiliang Wang; David J. Spiro; Elisabet Caler; Qi Zhao; Jonathan Crabtree; Jonathan E. Allen; Arthur L. Delcher; David B. Guiliano; Diego Miranda-Saavedra; Samuel V. Angiuoli; Todd Creasy; Paolo Amedeo; Brian J. Haas; Najib M. El-Sayed; Jennifer R. Wortman; Tamara Feldblyum; Luke J. Tallon; Michael C. Schatz; Martin Shumway; Hean Koo; Seth Schobel; Mihaela Pertea; Mihai Pop; Owen White; Geoffrey J. Barton; Clotilde K. S. Carlow; Michael J. Crawford; Jennifer Daub; Matthew W. Dimmic

Parasitic nematodes that cause elephantiasis and river blindness threaten hundreds of millions of people in the developing world. We have sequenced the ∼90 megabase (Mb) genome of the human filarial parasite Brugia malayi and predict ∼11,500 protein coding genes in 71 Mb of robustly assembled sequence. Comparative analysis with the free-living, model nematode Caenorhabditis elegans revealed that, despite these genes having maintained little conservation of local synteny during ∼350 million years of evolution, they largely remain in linkage on chromosomal units. More than 100 conserved operons were identified. Analysis of the predicted proteome provides evidence for adaptations of B. malayi to niches in its human and vector hosts and insights into the molecular basis of a mutualistic relationship with its Wolbachia endosymbiont. These findings offer a foundation for rational drug design.


Nature Genetics | 2011

The draft genome of the parasitic nematode Trichinella spiralis

Makedonka Mitreva; Douglas P. Jasmer; Dante S. Zarlenga; Zhengyuan Wang; Sahar Abubucker; John Martin; Christina M. Taylor; Yong Yin; Lucinda Fulton; Patrick Minx; Shiaw-Pyng Yang; Wesley C. Warren; Robert S. Fulton; Veena Bhonagiri; Xu Zhang; Kym Hallsworth-Pepin; Sandra W. Clifton; James P. McCarter; Judith A. Appleton; Elaine R. Mardis; Richard Wilson

Genome evolution studies for the phylum Nematoda have been limited by focusing on comparisons involving Caenorhabditis elegans. We report a draft genome sequence of Trichinella spiralis, a food-borne zoonotic parasite, which is the most common cause of human trichinellosis. This parasitic nematode is an extant member of a clade that diverged early in the evolution of the phylum, enabling identification of archetypical genes and molecular signatures exclusive to nematodes. We sequenced the 64-Mb nuclear genome, which is estimated to contain 15,808 protein-coding genes, at ∼35-fold coverage using whole-genome shotgun and hierarchal map–assisted sequencing. Comparative genome analyses support intrachromosomal rearrangements across the phylum, disproportionate numbers of protein family deaths over births in parasitic compared to a non-parasitic nematode and a preponderance of gene-loss and -gain events in nematodes relative to Drosophila melanogaster. This genome sequence and the identified pan-phylum characteristics will contribute to genome evolution studies of Nematoda as well as strategies to combat global parasites of humans, food animals and crops.


Genome Biology | 2003

Horizontally transferred genes in plant-parasitic nematodes: a high-throughput genomic approach

Elizabeth H. Scholl; Jeffrey L. Thorne; James P. McCarter; David McK. Bird

BackgroundPublished accounts of horizontally acquired genes in plant-parasitic nematodes have not been the result of a specific search for gene transfer per se, but rather have emerged from characterization of individual genes. We present a method for a high-throughput genome screen for horizontally acquired genes, illustrated using expressed sequence tag (EST) data from three species of root-knot nematode, Meloidogyne species.ResultsOur approach identified the previously postulated horizontally transferred genes and revealed six new candidates. Screening was partially dependent on sequence quality, with more candidates identified from clustered sequences than from raw EST data. Computational and experimental methods verified the horizontal gene transfer candidates as bona fide nematode genes. Phylogenetic analysis implicated rhizobial ancestors as donors of horizontally acquired genes in Meloidogyne.ConclusionsHigh-throughput genomic screening is an effective way to identify horizontal gene transfer candidates. Transferred genes that have undergone amelioration of nucleotide composition and codon bias have been identified using this approach. Analysis of these horizontally transferred gene candidates suggests a link between horizontally transferred genes in Meloidogyne and parasitism.


Genome Biology | 2003

Analysis and functional classification of transcripts from the nematode Meloidogyne incognita

James P. McCarter; Makedonka Mitreva; John Martin; Mike Dante; Todd Wylie; Uma Rao; Deana Pape; Yvette Bowers; Brenda Theising; Claire V Murphy; Andrew P. Kloek; Brandi Chiapelli; Sandra W. Clifton; David McK. Bird; Robert H. Waterston

BackgroundPlant parasitic nematodes are major pathogens of most crops. Molecular characterization of these species as well as the development of new techniques for control can benefit from genomic approaches. As an entrée to characterizing plant parasitic nematode genomes, we analyzed 5,700 expressed sequence tags (ESTs) from second-stage larvae (L2) of the root-knot nematode Meloidogyne incognita.ResultsFrom these, 1,625 EST clusters were formed and classified by function using the Gene Ontology (GO) hierarchy and the Kyoto KEGG database. L2 larvae, which represent the infective stage of the life cycle before plant invasion, express a diverse array of ligand-binding proteins and abundant cytoskeletal proteins. L2 are structurally similar to Caenorhabditis elegans dauer larva and the presence of transcripts encoding glyoxylate pathway enzymes in the M. incognita clusters suggests that root-knot nematode larvae metabolize lipid stores while in search of a host. Homology to other species was observed in 79% of translated cluster sequences, with the C. elegans genome providing more information than any other source. In addition to identifying putative nematode-specific and Tylenchida-specific genes, sequencing revealed previously uncharacterized horizontal gene transfer candidates in Meloidogyne with high identity to rhizobacterial genes including homologs of nodL acetyltransferase and novel cellulases.ConclusionsWith sequencing from plant parasitic nematodes accelerating, the approaches to transcript characterization described here can be applied to more extensive datasets and also provide a foundation for more complex genome analyses.


Annual Review of Phytopathology | 2009

The Genomes of Root-Knot Nematodes

David McK. Bird; Valerie M. Williamson; Pierre Abad; James P. McCarter; Etienne Danchin; Philippe Castagnone-Sereno; Charles H. Opperman

Plant-parasitic nematodes are the most destructive group of plant pathogens worldwide and are extremely challenging to control. The recent completion of two root-knot nematode genomes opens the way for a comparative genomics approach to elucidate the success of these parasites. Sequencing revealed that Meloidogyne hapla, a diploid that reproduces by facultative, meiotic parthenogenesis, encodes approximately 14,200 genes in a compact, 54 Mpb genome. Indeed, this is the smallest metazoan genome completed to date. By contrast, the 86 Mbp Meloidogyne incognita genome encodes approximately 19,200 genes. This species reproduces by obligate mitotic parthenogenesis and exhibits a complex pattern of aneuploidy. The genome includes triplicated regions and contains allelic pairs with exceptionally high degrees of sequence divergence, presumably reflecting adaptations to the strictly asexual reproductive mode. Both root-knot nematode genomes have compacted gene families compared with the free-living nematode Caenorhabditis elegans, and both encode large suites of enzymes that uniquely target the host plant. Acquisition of these genes, apparently via horizontal gene transfer, and their subsequent expansion and diversification point to the evolutionary history of these parasites. It also suggests new routes to their control.


Nucleic Acids Research | 2004

Nematode.net: a tool for navigating sequences from parasitic and free‐living nematodes

Todd Wylie; John Martin; Michael Dante; Makedonka Mitreva; Sandra W. Clifton; Asif T. Chinwalla; Robert H. Waterston; Richard Wilson; James P. McCarter

Nematode.net (www.nematode.net) is a web- accessible resource for investigating gene sequences from nematode genomes. The database is an outgrowth of the parasitic nematode EST project at Washington Universitys Genome Sequencing Center (GSC), St Louis. A sister project at the University of Edinburgh and the Sanger Institute is also underway. More than 295,000 ESTs have been generated from >30 nematodes other than Caenorhabditis elegans including key parasites of humans, animals and plants. Nematode.net currently provides NemaGene EST cluster consensus sequence, enhanced online BLAST search tools, functional classifications of cluster sequences and comprehensive information concerning the ongoing generation of nematode genome data. The long-term goal of nematode.net is to provide the scientific community with the highest quality sequence information and tools for studying these diverse species.


Trends in Parasitology | 2003

400 000 nematode ESTs on the net

John Parkinson; Makedonka Mitreva; Neil Hall; Mark Blaxter; James P. McCarter

The parasitic nematode expressed sequence tag (EST) project, a collaboration between University of Edinburgh and the Wellcome Trust Sanger Institute in the UK and the Genome Sequencing Center, St Louis, MO, USA, is currently generating sequence information from >30 different species of nematode. Over 400000 nematode ESTs are now available and at least another 130000 are planned. Here, an update is provided on the status of the project and describes the database tools being developed to disseminate these data.


PLOS Neglected Tropical Diseases | 2007

Ivermectin resistance in Onchocerca volvulus: Toward a genetic basis

Sara Lustigman; James P. McCarter

SL has received research grants for the development of anti-Onchocerca vaccines and macrofilaricides. JPM is a share-holder and employee of Divergence, Inc., a company that works on parasite control in plants, animals, and humans. The authors received no specific funding for this study.


Parasitology Research | 2006

Detection of putative secreted proteins in the plant-parasitic nematode Heterodera schachtii

Bartel Vanholme; Makedonka Mitreva; Wim Van Criekinge; Marc Logghe; David McK. Bird; James P. McCarter; Godelieve Gheysen

The beet cyst nematode Heterodera schachtii is an important pathogen worldwide, but its molecular characterization has been limited to studying individual genes of interest. We undertook a high-throughput genomic approach and drastically increased the number of available sequences for this parasite. A total of 2,662 expressed sequence tags were grouped into 1,212 clusters representing a nonredundant catalog of H. schachtii genes. Implementing a bioinformatic workflow, we identified 50 sequences coding for candidate secreted proteins. All of these contain a putative signal peptide required for entry into the secretory pathway and lack any transmembrane domain. Included are previously postulated cell-wall-degrading enzymes and other parasitism-related genes. Moreover, we provide the first report of an arabinogalactan endo-1,4-β-galactosidase enzyme (EC 3.2.1.89) in animals. As sequence data increase at a rapid rate, developing high-throughput genomic screening is a necessity. The in silico approach described here is an effective way to identify putative secreted proteins and prioritize candidates for further studies.


BMC Genomics | 2009

Sequence mining and transcript profiling to explore cyst nematode parasitism

Axel A. Elling; Makedonka Mitreva; Xiaowu Gai; John Martin; Justin Recknor; Eric L. Davis; Richard S. Hussey; Dan Nettleton; James P. McCarter; Thomas J. Baum

BackgroundCyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants.ResultsWe present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode.ConclusionWe have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H. glycines genes to a pool of 788 most promising candidate genes (including known parasitism genes) and documented their expression profiles. Using our approach to pre-select genes likely involved in parasitism now allows detailed functional analyses in a manner not feasible for larger numbers of genes. The generation of the candidate pool described here is an important enabling advance because it will significantly facilitate the unraveling of fascinating plant-animal interactions and deliver knowledge that can be transferred to other pathogen-host systems. Ultimately, the exploration of true parasitism genes verified from the gene pool delineated here will identify weaknesses in the nematode life cycle that can be exploited by novel anti-nematode efforts.

Collaboration


Dive into the James P. McCarter's collaboration.

Top Co-Authors

Avatar

Makedonka Mitreva

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Martin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David McK. Bird

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Sandra W. Clifton

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy L. McKenzie

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Hallberg

Indiana University Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge