Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. McCusker is active.

Publication


Featured researches published by James P. McCusker.


Pigment Cell & Melanoma Research | 2010

PLX4032, a selective BRAFV600E kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAFWT melanoma cells

Ruth Halaban; Wengeng Zhang; Antonella Bacchiocchi; Elaine Cheng; Fabio Parisi; Stephan Ariyan; Michael Krauthammer; James P. McCusker; Yuval Kluger; Mario Sznol

BRAFV600E/K is a frequent mutationally active tumor‐specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide‐spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor‐dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.


international semantic web conference | 2010

When owl: sameAs isn't the same: an analysis of identity in linked data

Harry Halpin; Patrick J. Hayes; James P. McCusker; Deborah L. McGuinness; Henry S. Thompson

In Linked Data, the use of owl:sameAs is ubiquitous in interlinking data-sets. There is however, ongoing discussion about its use, and potential misuse, particularly with regards to interactions with inference. In fact, owl:sameAs can be viewed as encoding only one point on a scale of similarity, one that is often too strong for many of its current uses. We describe how referentially opaque contexts that do not allow inference exist, and then outline some varieties of referentially-opaque alternatives to owl:sameAs. Finally, we report on an empirical experiment over randomly selected owl:sameAs statements from the Web of data. This theoretical apparatus and experiment shed light upon how owl:sameAs is being used (and misused) on the Web of data.


Nature Genetics | 2015

Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas

Michael Krauthammer; Yong Kong; Antonella Bacchiocchi; Perry Evans; Natapol Pornputtapong; Cen Wu; James P. McCusker; Shuangge Ma; Elaine Cheng; Robert Straub; Merdan Serin; Marcus Bosenberg; Stephan Ariyan; Deepak Narayan; Mario Sznol; Harriet M. Kluger; Shrikant Mane; Joseph Schlessinger; Richard P. Lifton; Ruth Halaban

We report on whole-exome sequencing (WES) of 213 melanomas. Our analysis established NF1, encoding a negative regulator of RAS, as the third most frequently mutated gene in melanoma, after BRAF and NRAS. Inactivating NF1 mutations were present in 46% of melanomas expressing wild-type BRAF and RAS, occurred in older patients and showed a distinct pattern of co-mutation with other RASopathy genes, particularly RASA2. Functional studies showed that NF1 suppression led to increased RAS activation in most, but not all, melanoma cases. In addition, loss of NF1 did not predict sensitivity to MEK or ERK inhibitors. The rebound pathway, as seen by the induction of phosphorylated MEK, occurred in cells both sensitive and resistant to the studied drugs. We conclude that NF1 is a key tumor suppressor lost in melanomas, and that concurrent RASopathy gene mutations may enhance its role in melanomagenesis.


Bioinformatics | 2008

Yale Image Finder (YIF)

Songhua Xu; James P. McCusker; Michael Krauthammer

UNLABELLED Yale Image Finder (YIF) is a publicly accessible search engine featuring a new way of retrieving biomedical images and associated papers based on the text carried inside the images. Image queries can also be issued against the image caption, as well as words in the associated paper abstract and title. A typical search scenario using YIF is as follows: a user provides few search keywords and the most relevant images are returned and presented in the form of thumbnails. Users can click on the image of interest to retrieve the high resolution image. In addition, the search engine will provide two types of related images: those that appear in the same paper, and those from other papers with similar image content. Retrieved images link back to their source papers, allowing users to find related papers starting with an image of interest. Currently, YIF has indexed over 140 000 images from over 34 000 open access biomedical journal papers. AVAILABILITY http://krauthammerlab.med.yale.edu/imagefinder/


Journal of Biomedical Semantics | 2011

The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

Joanne S. Luciano; Bosse Andersson; Colin R. Batchelor; Olivier Bodenreider; Timothy W.I. Clark; Christine Denney; Christopher Domarew; Thomas Gambet; Lee Harland; Anja Jentzsch; Vipul Kashyap; Peter Kos; Julia Kozlovsky; Timothy Lebo; Scott M Marshall; James P. McCusker; Deborah L. McGuinness; Chimezie Ogbuji; Elgar Pichler; Robert L Powers; Eric Prud’hommeaux; Matthias Samwald; Lynn M. Schriml; Peter J. Tonellato; Patricia L. Whetzel; Jun Zhao; Susie Stephens; Michel Dumontier

BackgroundTranslational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery.ResultsWe developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action.ConclusionsThis work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine.AvailabilityTMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql.


Journal of Biomedical Semantics | 2014

The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

Michel Dumontier; Christopher J. O. Baker; Joachim Baran; Alison Callahan; Leonid L. Chepelev; José Cruz-Toledo; Nicholas Del Rio; Geraint Duck; Laura I. Furlong; Nichealla Keath; Dana Klassen; James P. McCusker; Núria Queralt-Rosinach; Matthias Samwald; Natalia Villanueva-Rosales; Mark D. Wilkinson; Robert Hoehndorf

The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org.


BMC Bioinformatics | 2009

Semantic web data warehousing for caGrid

James P. McCusker; Joshua A Phillips; Alejandra González Beltrán; Anthony Finkelstein; Michael Krauthammer

The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG® Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.


Future Generation Computer Systems | 2011

Linked provenance data: A semantic Web-based approach to interoperable workflow traces

Li Ding; James R. Michaelis; James P. McCusker; Deborah L. McGuinness

The Third Provenance Challenge (PC3) offered an opportunity for provenance researchers to evaluate the interoperability of leading provenance models with special emphasis on importing and querying workflow traces generated by others. We investigated interoperability issues related to reusing Open Provenance Model (OPM)-based workflow traces. We compiled data about interoperability issues that were observed during PC3 and use that data to help describe and motivate solution paths for two outstanding interoperability issues in OPM-based provenance data reuse: (i) a provenance trace often requires both generic provenance data and domain-specific data to support future reuse (such as querying); (ii) diverse provenance traces (possibly from different sources) often require preservation and interconnection to support future aggregation and comparison. In order to address these issues and to facilitate interoperable reuse, integration, and alignment of provenance data, we propose a Semantic Web-based approach known as Linked Provenance Data, where: (i) the Web Ontology Language (OWL) can be used to support complex domain concept modeling, such as subtype taxonomy and concept alignment, and seamlessly connect domain extensions to OPM core concepts; (ii) Linked Data can enable open and transparent infrastructure for provenance data reuse.


BMC Bioinformatics | 2011

A semantic web framework to integrate cancer omics data with biological knowledge

Matthew E. Holford; James P. McCusker; Kei-Hoi Cheung; Michael Krauthammer

BackgroundThe RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge.ResultsFor this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cells molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent.ConclusionsWe were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.


hawaii international conference on system sciences | 2013

Towards Next Generation Health Data Exploration: A Data Cube-Based Investigation into Population Statistics for Tobacco

James P. McCusker; Deborah L. McGuinness; Jeongmin Lee; Chavon Thomas; Paul Courtney; Zaria Tatalovich; Noshir Contractor; Glen D. Morgan; Abdul R. Shaikh

Increasingly, experts and interested laypeople are turning to the explosion of online data to form and explore hypotheses about relationships between public health intervention strategies and their possible impacts. We have engaged in a multi-year collaboration to use and design semantic techniques and tools to support the current and next generation of these explorations. We introduce a tool, qb.js, to enable access to multidimensional statistical data in ways that allow non-specialists to explore and create specific visualizations of that data. We focus on explorations of health data - in particular aimed at helping to support the formation and analysis of hypotheses about public health intervention strategies and their correlation with health-related behavior changes. We used qb.js to formulate and explore the hypothesis that youth tobacco access laws have consistent, measurable impacts on the rate of change in cigarette smoking among high school students over time. While focused in this instance on one particular intervention strategy (i.e., limiting youth access to tobacco), this analytics platform may be used for a wide range of correlational analyses. To address this hypothesis, we converted population science data on tobacco-related policy and behavior from ImpacTeen to a Resource Description framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. A Semantic Data Dictionary enabled mapping between the original datasets and the RDF representation. This allowed for the creation and publication of data visualizations using qb.js. The RDF Data Cube representation made it possible to discover a significant downward effect from the introduction of nine youth tobacco access laws on the rate of change in smoking prevalence among high school-aged youth.

Collaboration


Dive into the James P. McCusker's collaboration.

Top Co-Authors

Avatar

Deborah L. McGuinness

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy Lebo

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Ding

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Yan

Rensselaer Polytechnic Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge