Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James P. White is active.

Publication


Featured researches published by James P. White.


Cell | 2013

Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging

Ana P. Gomes; Nathan L. Price; Alvin J.Y. Ling; Javid Moslehi; Magdalene K. Montgomery; Luis Rajman; James P. White; João S. Teodoro; Christiane D. Wrann; Basil P. Hubbard; Evi M. Mercken; Carlos M. Palmeira; Rafael de Cabo; Anabela P. Rolo; Nigel Turner; Eric L. Bell; David A. Sinclair

Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible.


Cell | 2012

A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy

Jorge L. Ruas; James P. White; Rajesh R. Rao; Sandra Kleiner; Kevin T. Brannan; Brooke C. Harrison; Nicholas P. Greene; Jun Wu; Jennifer L. Estall; Brian A. Irving; Ian R. Lanza; Kyle A. Rasbach; Mitsuharu Okutsu; K. Sreekumaran Nair; Zhen Yan; Leslie A. Leinwand; Bruce M. Spiegelman

PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise but has no effects on muscle strength or hypertrophy. We have identified a form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induces IGF1 and represses myostatin, and expression of PGC-1α4 in vitro and in vivo induces robust skeletal muscle hypertrophy. Importantly, mice with skeletal muscle-specific transgenic expression of PGC-1α4 show increased muscle mass and strength and dramatic resistance to the muscle wasting of cancer cachexia. Expression of PGC-1α4 is preferentially induced in mouse and human muscle during resistance exercise. These studies identify a PGC-1α protein that regulates and coordinates factors involved in skeletal muscle hypertrophy.


Cell | 2014

Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis.

Rajesh R. Rao; Jonathan Z. Long; James P. White; Katrin J. Svensson; Jesse Lou; Isha Lokurkar; Mark P. Jedrychowski; Jorge L. Ruas; Christiane D. Wrann; James C. Lo; Donny M. Camera; Jenn Lachey; Steven P. Gygi; Jasbir Seehra; John A. Hawley; Bruce M. Spiegelman

Exercise training benefits many organ systems and offers protection against metabolic disorders such as obesity and diabetes. Using the recently identified isoform of PGC1-α (PGC1-α4) as a discovery tool, we report the identification of meteorin-like (Metrnl), a circulating factor that is induced in muscle after exercise and in adipose tissue upon cold exposure. Increasing circulating levels of Metrnl stimulates energy expenditure and improves glucose tolerance and the expression of genes associated with beige fat thermogenesis and anti-inflammatory cytokines. Metrnl stimulates an eosinophil-dependent increase in IL-4 expression and promotes alternative activation of adipose tissue macrophages, which are required for the increased expression of the thermogenic and anti-inflammatory gene programs in fat. Importantly, blocking Metrnl actions in vivo significantly attenuates chronic cold-exposure-induced alternative macrophage activation and thermogenic gene responses. Thus, Metrnl links host-adaptive responses to the regulation of energy homeostasis and tissue inflammation and has therapeutic potential for metabolic and inflammatory diseases.


Cell Metabolism | 2013

Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway

Christiane D. Wrann; James P. White; John Salogiannnis; Dina Laznik-Bogoslavski; Jun Wu; Di Ma; Jiandie D. Lin; Michael E. Greenberg; Bruce M. Spiegelman

Exercise can improve cognitive function and has been linked to the increased expression of brain-derived neurotrophic factor (BDNF). However, the underlying molecular mechanisms driving the elevation of this neurotrophin remain unknown. Here we show that FNDC5, a previously identified muscle protein that is induced in exercise and is cleaved and secreted as irisin, is also elevated by endurance exercise in the hippocampus of mice. Neuronal Fndc5 gene expression is regulated by PGC-1α, and Pgc1a(-/-) mice show reduced Fndc5 expression in the brain. Forced expression of FNDC5 in primary cortical neurons increases Bdnf expression, whereas RNAi-mediated knockdown of FNDC5 reduces Bdnf. Importantly, peripheral delivery of FNDC5 to the liver via adenoviral vectors, resulting in elevated blood irisin, induces expression of Bdnf and other neuroprotective genes in the hippocampus. Taken together, our findings link endurance exercise and the important metabolic mediators, PGC-1α and FNDC5, with BDNF expression in the brain.


Nature | 2014

Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia

Serkan Kir; James P. White; Sandra Kleiner; Lawrence Kazak; Paul Cohen; Vickie E. Baracos; Bruce M. Spiegelman

Cachexia is a wasting disorder of adipose and skeletal muscle tissues that leads to profound weight loss and frailty. About half of all cancer patients suffer from cachexia, which impairs quality of life, limits cancer therapy and decreases survival. One key characteristic of cachexia is higher resting energy expenditure levels than in healthy individuals, which has been linked to greater thermogenesis by brown fat. How tumours induce brown fat activity is unknown. Here, using a Lewis lung carcinoma model of cancer cachexia, we show that tumour-derived parathyroid-hormone-related protein (PTHrP) has an important role in wasting, through driving the expression of genes involved in thermogenesis in adipose tissues. Neutralization of PTHrP in tumour-bearing mice blocked adipose tissue browning and the loss of muscle mass and strength. Our results demonstrate that PTHrP mediates energy wasting in fat tissues and contributes to the broader aspects of cancer cachexia. Thus, neutralization of PTHrP might hold promise for ameliorating cancer cachexia and improving patient survival.


PLOS ONE | 2011

The Regulation of Skeletal Muscle Protein Turnover during the Progression of Cancer Cachexia in the ApcMin/+ Mouse

James P. White; John W. Baynes; Stephen Welle; Matthew C. Kostek; Lydia E. Matesic; Shuichi Sato; James A. Carson

Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The ApcMin/+ mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the ApcMin/+ mouse is not known. Cachexia progression was studied in ApcMin/+ mice that were either weight stable (WS) or had initial (≤5%), intermediate (6–19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ∼50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.


Nature | 2016

A CRISPR screen defines a signal peptide processing pathway required by flaviviruses

Rong Zhang; Jonathan J. Miner; Matthew J. Gorman; Keiko Rausch; Holly Ramage; James P. White; Adam Zuiani; Ping Zhang; Estefania Fernandez; Qiang Zhang; Kimberly A. Dowd; Theodore C. Pierson; Sara Cherry; Michael S. Diamond

Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.


Molecular and Cellular Endocrinology | 2013

Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle

James P. White; Song Gao; Melissa J. Puppa; Shuichi Sato; Stephen Welle; James A. Carson

Low endogenous testosterone production, known as hypogonadism is commonly associated with conditions inducing muscle wasting. Akt signaling can control skeletal muscle mass through mTOR regulation of protein synthesis and FoxO regulation of protein degradation, and this pathway has been previously identified as a target of androgen signaling. However, the testosterone sensitivity of Akt/mTOR signaling requires further understanding in order to grasp the significance of varied testosterone levels seen with wasting disease on muscle protein turnover regulation. Therefore, the purpose of this study is to determine the effect of androgen availability on muscle Akt/mTORC1/FoxO3a regulation in skeletal muscle and cultured C(2)C(12) myotubes. C57BL/6 mice were either castrated for 42 days or castrated and treated with the nandrolone decanoate (ND) (6 mg/kg bw/wk). Testosterone loss (TL) significantly decreased volitional grip strength, body weight, and gastrocnemius (GAS) muscle mass, and ND reversed these changes. Related to muscle mass regulation, TL decreased muscle IGF-1 mRNA, the rate of myofibrillar protein synthesis, Akt phosphorylation, and the phosphorylation of Akt targets, GSK3β, PRAS40 and FoxO3a. TL induced expression of FoxO transcriptional targets, MuRF1, atrogin1 and REDD1. Muscle AMPK and raptor phosphorylation, mTOR inhibitors, were not altered by low testosterone. ND restored IGF-1 expression and Akt/mTORC1 signaling while repressing expression of FoxO transcriptional targets. Testosterone (T) sensitivity of Akt/mTORC1 signaling was examined in C(2)C(12) myotubes, and mTOR phosphorylation was induced independent of Akt activation at low T concentrations, while a higher T concentration was required to activate Akt signaling. Interestingly, low concentration T was sufficient to amplify myotube mTOR and Akt signaling after 24 h of T withdrawal, demonstrating the potential in cultured myotubes for a T initiated positive feedback mechanism to amplify Akt/mTOR signaling. In summary, androgen withdrawal decreases muscle myofibrillar protein synthesis through Akt/mTORC1 signaling, which is independent of AMPK activation, and readily reversible by anabolic steroid administration. Acute Akt activation in C(2)C(12) myotubes is sensitive to a high concentration of testosterone, and low concentrations of testosterone can activate mTOR signaling independent of Akt.


Skeletal Muscle | 2012

IL-6 regulation on skeletal muscle mitochondrial remodeling during cancer cachexia in the ApcMin/+ mouse

James P. White; Melissa J. Puppa; Shuichi Sato; Song Gao; Robert L. Price; John W. Baynes; Matthew C. Kostek; Lydia E. Matesic; James A. Carson

BackgroundMuscle protein turnover regulation during cancer cachexia is being rapidly defined, and skeletal muscle mitochondria function appears coupled to processes regulating muscle wasting. Skeletal muscle oxidative capacity and the expression of proteins regulating mitochondrial biogenesis and dynamics are disrupted in severely cachectic ApcMin/+ mice. It has not been determined if these changes occur at the onset of cachexia and are necessary for the progression of muscle wasting. Exercise and anti-cytokine therapies have proven effective in preventing cachexia development in tumor bearing mice, while their effect on mitochondrial content, biogenesis and dynamics is not well understood. The purposes of this study were to 1) determine IL-6 regulation on mitochondrial remodeling/dysfunction during the progression of cancer cachexia and 2) to determine if exercise training can attenuate mitochondrial dysfunction and the induction of proteolytic pathways during IL-6 induced cancer cachexia.MethodsApcMin/+ mice were examined during the progression of cachexia, after systemic interleukin (IL)-6r antibody treatment, or after IL-6 over-expression with or without exercise. Direct effects of IL-6 on mitochondrial remodeling were examined in cultured C2C12 myoblasts.ResultsMitochondrial content was not reduced during the initial development of cachexia, while muscle PGC-1α and fusion (Mfn1, Mfn2) protein expression was repressed. With progressive weight loss mitochondrial content decreased, PGC-1α and fusion proteins were further suppressed, and fission protein (FIS1) was induced. IL-6 receptor antibody administration after the onset of cachexia improved mitochondrial content, PGC-1α, Mfn1/Mfn2 and FIS1 protein expression. IL-6 over-expression in pre-cachectic mice accelerated body weight loss and muscle wasting, without reducing mitochondrial content, while PGC-1α and Mfn1/Mfn2 protein expression was suppressed and FIS1 protein expression induced. Exercise normalized these IL-6 induced effects. C2C12 myotubes administered IL-6 had increased FIS1 protein expression, increased oxidative stress, and reduced PGC-1α gene expression without altered mitochondrial protein expression.ConclusionsAltered expression of proteins regulating mitochondrial biogenesis and fusion are early events in the initiation of cachexia regulated by IL-6, which precede the loss of muscle mitochondrial content. Furthermore, IL-6 induced mitochondrial remodeling and proteolysis can be rescued with moderate exercise training even in the presence of high circulating IL-6 levels.


Journal of The International Society of Sports Nutrition | 2008

Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage

James P. White; Jacob M. Wilson; Krista Austin; Beau K. Greer; Noah St. John; Lynn B. Panton

PurposeTo determine if timing of a supplement would have an effect on muscle damage, function and soreness.MethodsTwenty-seven untrained men (21 ± 3 yrs) were given a supplement before or after exercise. Subjects were randomly assigned to a pre exercise (n = 9), received carbohydrate/protein drink before exercise and placebo after, a post exercise (n = 9), received placebo before exercise and carbohydrate/protein drink after, or a control group (n = 9), received placebo before and after exercise. Subjects performed 50 eccentric quadriceps contractions on an isokinetic dynamometer. Tests for creatine kinase (CK), maximal voluntary contraction (MVC) and muscle soreness were recorded before exercise and at six, 24, 48, 72, and 96 h post exercise. Repeated measures ANOVA were used to analyze data.ResultsThere were no group by time interactions however, CK significantly increased for all groups when compared to pre exercise (101 ± 43 U/L) reaching a peak at 48 h (661 ± 1178 U/L). MVC was significantly reduced at 24 h by 31.4 ± 14.0%. Muscle soreness was also significantly increased from pre exercise peaking at 48 h.ConclusionEccentric exercise caused significant muscle damage, loss of strength, and soreness; however timing of ingestion of carbohydrate/protein supplement had no effect.

Collaboration


Dive into the James P. White's collaboration.

Top Co-Authors

Avatar

James A. Carson

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Shuichi Sato

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Melissa J. Puppa

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

John W. Baynes

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beau K. Greer

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kandy T. Velázquez

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge