Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Palis is active.

Publication


Featured researches published by James Palis.


Nature | 2000

Positional cloning of zebrafish ferroportin1 identifies a conservedvertebrate iron exporter

Adriana Donovan; Alison Brownlie; Yi Zhou; Jennifer Shepard; Stephen J. Pratt; John Moynihan; Barry H. Paw; Anna Drejer; Bruce Barut; A. Zapata; Terence C. Law; Carlo Brugnara; Samuel E. Lux; Geraldine S. Pinkus; Jack L. Pinkus; Paul D. Kingsley; James Palis; Mark D. Fleming; Nancy C. Andrews; Leonard I. Zon

Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.


Nature | 2004

Haemangioblast commitment is initiated in the primitive streak of the mouse embryo

Tara L. Huber; Valerie Kouskoff; H. Joerg Fehling; James Palis; Gordon Keller

Haematopoietic and vascular cells are thought to arise from a common progenitor called the haemangioblast. Support for this concept has been provided by embryonic stem (ES) cell differentiation studies that identified the blast colony-forming cell (BL-CFC), a progenitor with both haematopoietic and vascular potential. Using conditions that support the growth of BL-CFCs, we identify comparable progenitors that can form blast cell colonies (displaying haematopoietic and vascular potential) in gastrulating mouse embryos. Cell mixing and limiting dilution analyses provide evidence that these colonies are clonal, indicating that they develop from a progenitor with haemangioblast potential. Embryo-derived haemangioblasts are first detected at the mid-streak stage of gastrulation and peak in number during the neural plate stage. Analysis of embryos carrying complementary DNA of the green fluorescent protein targeted to the brachyury locus demonstrates that the haemangioblast is a subpopulation of mesoderm that co-expresses brachyury (also known as T) and Flk-1 (also known as Kdr). Detailed mapping studies reveal that haemangioblasts are found at highest frequency in the posterior region of the primitive streak, indicating that initial stages of haematopoietic and vascular commitment occur before blood island development in the yolk sac.


Nature | 2005

Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis.

Rebecca A. Wingert; Jenna L. Galloway; Bruce Barut; Helen Foott; Paula G. Fraenkel; Jennifer L. Axe; Gerhard J. Weber; Kimberly Dooley; Alan J. Davidson; Barry H. Paw; George C. Shaw; Paul D. Kingsley; James Palis; Heidi L. Schubert; Opal S. Chen; Jerry Kaplan; Leonard I. Zon

Iron is required to produce haem and iron–sulphur (Fe–S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe–S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of Δgrx5 yeast Fe–S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe–S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5′ iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe–S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe–S cluster assembly.


Science | 2008

A heme export protein is required for red blood cell differentiation and iron homeostasis

Siobán B. Keel; Raymond T. Doty; Zhantao Yang; John G. Quigley; Jing Chen; Sue E. Knoblaugh; Paul D. Kingsley; Ivana De Domenico; Michael B. Vaughn; Jerry Kaplan; James Palis; Janis L. Abkowitz

Hemoproteins are critical for the function and integrity of aerobic cells. However, free heme is toxic. Therefore, cells must balance heme synthesis with its use. We previously demonstrated that the feline leukemia virus, subgroup C, receptor (FLVCR) exports cytoplasmic heme. Here, we show that FLVCR-null mice lack definitive erythropoiesis, have craniofacial and limb deformities resembling those of patients with Diamond-Blackfan anemia, and die in midgestation. Mice with FLVCR that is deleted neonatally develop a severe macrocytic anemia with proerythroblast maturation arrest, which suggests that erythroid precursors export excess heme to ensure survival. We further demonstrate that FLVCR mediates heme export from macrophages that ingest senescent red cells and regulates hepatic iron. Thus, the trafficking of heme, and not just elemental iron, facilitates erythropoiesis and systemic iron balance.


Nature | 2003

cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes

Alan J. Davidson; Patricia Ernst; Yuan Wang; Marcus P.S. Dekens; Paul D. Kingsley; James Palis; Stanley J. Korsmeyer; George Q. Daley; Leonard I. Zon

Organogenesis is dependent on the formation of distinct cell types within the embryo. Important to this process are the hox genes, which are believed to confer positional identities to cells along the anteroposterior axis. Here, we have identified the caudal-related gene cdx4 as the locus mutated in kugelig (kgg), a zebrafish mutant with an early defect in haematopoiesis that is associated with abnormal anteroposterior patterning and aberrant hox gene expression. The blood deficiency in kgg embryos can be rescued by overexpressing hoxb7a or hoxa9a but not hoxb8a, indicating that the haematopoietic defect results from perturbations in specific hox genes. Furthermore, the haematopoietic defect in kgg mutants is not rescued by scl overexpression, suggesting that cdx4 and hox genes act to make the posterior mesoderm competent for blood development. Overexpression of cdx4 during zebrafish development or in mouse embryonic stem cells induces blood formation and alters hox gene expression. Taken together, these findings demonstrate that cdx4 regulates hox genes and is necessary for the specification of haematopoietic cell fate during vertebrate embryogenesis.


Development | 2002

Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression.

Yun Shin Chung; Wen Jie Zhang; Elizabeth Arentson; Paul D. Kingsley; James Palis; Kyunghee Choi

Accumulating studies support the idea that a common progenitor, termed the hemangioblast, generates both hematopoietic and endothelial cell lineages. To better define the relationship between these cell lineages, we have generated knock-in embryonic stem (ES) cells carrying a non-functional human CD4 at the Scl locus. By using in vitro differentiated Scl+/CD4 ES cells, we demonstrate that FLK1 and SCL are molecular determinants of the hemangioblast. Furthermore, our studies demonstrate that hematopoietic and endothelial cells develop via distinct, sequential generation of FLK1 and SCL-expressing cells. FLK1+CD4- cells first arise in developing embryoid bodies. The Scl gene is turned on within FLK1+CD4- cells to give rise to FLK1+CD4+ cells. Alternatively, a subpopulation of the initial FLK1+CD4- cells remains as SCL negative. Within the FLK1+CD4+ cells, FLK1 is down regulated to generate FILK1-CD4+ cells. Replating studies demonstrate that hematopoietic progenitors are enriched within FLK1+CD4+ and FLK1-CD4+ cells, while endothelial cells develop from FLK1+CD4+ and FLK1+CD4- cell populations.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis

James Palis; R. J. Chan; A. Koniski; R. Patel; M. Starr; Mervin C. Yoder

During mouse embryogenesis, two waves of hematopoietic progenitors originate in the yolk sac. The first wave consists of primitive erythroid progenitors that arise at embryonic day 7.0 (E7.0), whereas the second wave consists of definitive erythroid progenitors that arise at E8.25. To determine whether these unilineage hematopoietic progenitors arise from multipotential precursors, we investigated the kinetics of high proliferative potential colony-forming cells (HPP-CFC), multipotent precursors that give rise to macroscopic colonies when cultured in vitro. No HPP-CFC were found at presomite stages (E6.5–E7.5). Rather, HPP-CFC were detected first at early somite stages (E8.25), exclusively in the yolk sac. HPP-CFC were found subsequently in the bloodstream at higher levels than the remainder of the embryo proper. However, the yolk sac remains the predominant site of HPP-CFC expansion (>100-fold) until the liver begins to serve as the major hematopoietic organ at E11.5. On secondary replating, embryonic HPP-CFC give rise to definitive erythroid and macrophage (but not primitive erythroid) progenitors. Our findings support the hypothesis that definitive but not primitive hematopoietic progenitors originate from yolk sac-derived HPP-CFC during late gastrulation.


Molecular and Cellular Biology | 1999

A novel ubiquitin-specific protease, UBP43, cloned from leukemia fusion protein AML1-ETO-expressing mice, functions in hematopoietic cell differentiation.

Li-Qin Liu; Robert L. Ilaria; Paul D. Kingsley; Atsushi Iwama; Richard A. Van Etten; James Palis; Dong-Er Zhang

ABSTRACT Using PCR-coupled subtractive screening-representational difference analysis, we have cloned a novel gene from AML1-ETO knockin mice. This gene is highly expressed in the yolk sac and fetal liver of the knockin mice. Nucleotide sequence analysis indicates that its cDNA contains an 1,107-bp open reading frame encoding a 368-amino-acid polypeptide. Further protein sequence and protein translation analysis shows that it belongs to a family of ubiquitin-specific proteases (UBP), and its molecular mass is 43 kDa. Therefore, we have named this gene UBP43. Like other ubiquitin proteases, the UBP43 protein has deubiquitinating enzyme activity. Protein ubiquitination has been implicated in many important cellular events. In wild-type adult mice, UBP43 is highly expressed in the thymus and in peritoneal macrophages. Among nine different murine hematopoietic cell lines analyzed, UBP43 expression is detectable only in cell lines related to the monocytic lineage. Furthermore, its expression is regulated during cytokine-induced monocytic cell differentiation. We have investigated its function in the hematopoietic myeloid cell line M1. UBP43 was introduced into M1 cells by retroviral gene transfer, and several high-expressing UBP43 clones were obtained for further study. Morphologic and cell surface marker examination of UBP43/M1 cells reveals that overexpression of UBP43 blocks cytokine-induced terminal differentiation of monocytic cells. These data suggest that UBP43 plays an important role in hematopoiesis by modulating either the ubiquitin-dependent proteolytic pathway or the ubiquitination state of another regulatory factor(s) during myeloid cell differentiation.


Current Opinion in Hematology | 2008

Ontogeny of erythropoiesis.

James Palis

Purpose of reviewThe present study review examines the current understanding of the ontogeny of erythropoiesis with a focus on the emergence of the embryonic (primitive) erythroid lineage and on the similarities and differences between the primitive and the fetal/adult (definitive) forms of erythroid cell maturation. Recent findingsPrimitive erythroid precursors in the mouse embryo and cultured in vitro from human embryonic stem cells undergo ‘maturational’ globin switching as they differentiate terminally. The appearance of a transient population of primitive ‘pyrenocytes’ (extruded nuclei) in the fetal bloodstream indicates that primitive erythroblasts enucleate by nuclear extrusion. In-vitro differentiation of human embryonic stem cells recapitulates hematopoietic ontogeny reminiscent of the murine yolk sac, including overlapping waves of hemangioblast, primitive, erythroid, and definitive erythroid progenitors. Definitive erythroid potential in zebrafish embryos, like that in mice, initially arises prior to, and independent of, hematopoietic stem cell emergence in the region of the aorta. Maturation of definitive erythroid cells within macrophage islands promotes erythroblast–erythroblast and erythroblast–stromal interactions that regulate red cell output. SummaryThe study of embryonic development in several different model systems, as well as in cultured human embryonic stem cells, continues to provide important insights into the ontogeny of erythropoiesis. Contrasting the similarities and differences between primitive and definitive erythropoiesis will lead to an improved understanding of erythroblast maturation and the terminal steps of erythroid differentiation.


Cell Metabolism | 2009

Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis

Roland Nilsson; Iman J. Schultz; Eric Adam Pierce; Kathleen A. Soltis; Amornrat Naranuntarat; Diane M. Ward; Joshua M. Baughman; Prasad N. Paradkar; Paul D. Kingsley; Valeria C. Culotta; Jerry Kaplan; James Palis; Barry H. Paw; Vamsi K. Mootha

Heme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unknown components, we utilized a large-scale computational screen to identify mitochondrial proteins whose transcripts consistently coexpress with the core machinery of heme biosynthesis. We identified SLC25A39, SLC22A4, and TMEM14C, which are putative mitochondrial transporters, as well as C1orf69 and ISCA1, which are iron-sulfur cluster proteins. Targeted knockdowns of all five genes in zebrafish resulted in profound anemia without impacting erythroid lineage specification. Moreover, silencing of Slc25a39 in murine erythroleukemia cells impaired iron incorporation into protoporphyrin IX, and vertebrate Slc25a39 complemented an iron homeostasis defect in the orthologous yeast mtm1Delta deletion mutant. Our results advance the molecular understanding of heme biosynthesis and offer promising candidate genes for inherited anemias.

Collaboration


Dive into the James Palis's collaboration.

Top Co-Authors

Avatar

Kathleen E. McGrath

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paul D. Kingsley

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anne D. Koniski

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Katherine H. Fegan

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jenna M. Frame

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Malik

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seana C. Catherman

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Leonard I. Zon

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge