James R. Arndt
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James R. Arndt.
Nano Research | 2012
Fanke Meng; Zhanglian Hong; James R. Arndt; Ming Li; Mingjia Zhi; Feng Yang; Nianqiang Wu
AbstractApproximately 15 nm thick nitrogen-doped lanthanum titanate (La2Ti2O7) nanosheets with a single-crystalline perovskite structure have been prepared by hydrothermal processing and subsequent heat treatment in NH3 at 600 °C. Doping nitrogen into the La2Ti2O7 nanosheets results in the narrowing of the band gap, extending the light absorption into the visible light region (∼495 nm). The nitrogen-doped La2Ti2O7 nanosheets not only show significant visible light photocatalytic activity toward the decomposition of methyl orange but also exhibit enhanced the ultraviolet light photocatalytic activity. The enhancement of photocatalytic activity originates from the narrowing of the band gap of La2Ti2O7 nanosheets. The results obtained show that the desirable route to extend the photocatalytic activity of a semiconductor from the ultraviolet to the visible light region is to narrow the band gap rather than to create localized mid-gap states.
Forensic Science International | 2012
James R. Arndt; Suzanne Bell; Lindsey Crookshanks; Marco Lovejoy; Casey Oleska; Tanya Tulley; Drew Wolfe
The organic components of gunshot residue (OGSR, also called firearms discharge residue (FDR) or cartridge discharge residue (CDR)) have been studied and discussed in the literature. These residues, consisting of particulates such as burned and unburned powder as well as molecular compounds, are rarely used in casework except for purposes such as shooting reconstructions. Molecular compounds that survive the firing event or that are created as a result of the firing event could, with focused research and development, open a new avenue for forensic gunshot residue analysis. In this study, the persistence of organic gunshot residue was evaluated using diphenylamine (DPA) as a target analyte and ion mobility spectrometry (IMS) as the detection system. Samples were collected from hands using a solvent swabbing technique and the swab was analyzed using direct thermal desorption for sample introduction into the IMS. OGSR was found to persist for at least 4 h. Although DPA is a widely used industrial compound, analysis of numerous blank and background samples (n∼100) did not show any significant response for DPA using this detector. Variations were noted among individuals and as such, the data set does not support estimation of a half-life as has been done for traditional primer residues. No secondary transfers were observed, suggesting the possibility of skin adhesion via interactions between the lipophilic organic compounds and skin lipids. IMS proved valuable as a means of generating patterns for forensic pattern matching and shows promise as a screening tool applied to firearms discharge.
Analytical Chemistry | 2014
Gregory C. Donohoe; Hossein Maleki; James R. Arndt; Mahdiar Khakinejad; Jinghai Yi; Carroll R. McBride; Timothy R. Nurkiewicz; Stephen J. Valentine
A new instrument that couples a low-pressure drift tube with a linear ion trap mass spectrometer is demonstrated for complex mixture analysis. The combination of the low-pressure separation with the ion trapping capabilities provides several benefits for complex mixture analysis. These include high sensitivity, unique ion fragmentation capabilities, and high reproducibility. Even though the gas-phase separation and the mass measurement steps are each conducted in an ion filtering mode, detection limits for mobility-selected peptide ions are in the tens of attomole range. In addition to ion separation, the low-pressure drift tube can be used as an ion fragmentation cell yielding mobility-resolved fragment ions that can be subsequently analyzed by multistage tandem mass spectrometry (MS(n)) methods in the ion trap. Because of the ion trap configuration, these methods can be comprised of any number (limited by ion signal) of collision-induced dissociation (CID) and electron transfer dissociation (ETD) processes. The high reproducibility of the gas-phase separation allows for comparison of two-dimensional ion mobility spectrometry (IMS)-MS data sets in a pixel-by-pixel fashion without the need for data set alignment. These advantages are presented in model analyses representing mixtures encountered in proteomics and metabolomics experiments.
Journal of the American Society for Mass Spectrometry | 2014
Mahdiar Khakinejad; Samaneh Ghassabi Kondalaji; Hossein Maleki; James R. Arndt; Gregory C. Donohoe; Stephen J. Valentine
AbstractThe gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined by ion mobility spectrometry (IMS) and hydrogen deuterium exchange (HDX)-tandem mass spectrometry (MS/MS) techniques. [M+4H]4+ ions exhibit two conformers with collision cross sections of 418 Å2 and 471 Å2. [M+3H]3+ ions exhibit a predominant conformer with a collision cross section of 340 Å2 as well as an unresolved conformer (shoulder) with a collision cross section of ~367 Å2. Maximum HDX levels for the more compact [M+4H]4+ ions and the compact and partially-folded [M+3H]3+ ions are ~12.9, ~15.5, and ~14.9, respectively. Ion structures obtained from molecular dynamics simulations (MDS) suggest that this ordering of HDX level results from increased charge-site/exchange-site density for the more compact ions of lower charge. Additionally, a new model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) for the computer-generated structures is shown to better correlate to the experimentally determined per-residue deuterium uptake. Future comparisons of IMS-HDX-MS data with structures obtained from MDS are discussed with respect to novel experiments that will reveal the HDX rates of individual residues. Graphical Abstractᅟ
Biomolecular Concepts | 2015
James R. Arndt; Maxmore Chaibva; Justin Legleiter
Abstract Huntington’s disease (HD) is caused by a polyglutamine (polyQ) domain that is expanded beyond a critical threshold near the N-terminus of the huntingtin (htt) protein, directly leading to htt aggregation. While full-length htt is a large (on the order of ∼350 kDa) protein, it is proteolyzed into a variety of N-terminal fragments that accumulate in oligomers, fibrils, and larger aggregates. It is clear that polyQ length is a key determinant of htt aggregation and toxicity. However, the flanking sequences around the polyQ domain, such as the first 17 amino acids on the N terminus (Nt17), influence aggregation, aggregate stability, influence other important biochemical properties of the protein and ultimately its role in pathogenesis. Here, we review the impact of Nt17 on htt aggregation mechanisms and kinetics, structural properties of Nt17 in both monomeric and aggregate forms, the potential role of posttranslational modifications (PTMs) that occur in Nt17 in HD, and the function of Nt17 as a membrane targeting domain.
Biochemistry | 2015
James R. Arndt; Samaneh Ghassabi Kondalaji; Megan M. Maurer; Arlo Parker; Justin Legleiter; Stephen J. Valentine
Early stage oligomer formation of the huntingtin protein may be driven by self-association of the 17-residue amphipathic α-helix at the proteins N-terminus (Nt17). Oligomeric structures have been implicated in neuronal toxicity and may represent important neurotoxic species in Huntingtons disease. Therefore, a residue-specific structural characterization of Nt17 is crucial to understanding and potentially inhibiting oligomer formation. Native electrospray ion mobility spectrometry-mass spectrometry (IMS-MS) techniques and molecular dynamics simulations (MDS) have been applied to study coexisting monomer and multimer conformations of Nt17, independent of the remainder of huntingtin exon 1. MDS suggests gas-phase monomer ion structures comprise a helix-turn-coil configuration and a helix-extended-coil region. Elongated dimer species comprise partially helical monomers arranged in an antiparallel geometry. This stacked helical bundle may represent the earliest stages of Nt17-driven oligomer formation. Nt17 monomers and multimers have been further probed using diethylpyrocarbonate (DEPC). An N-terminal site (N-terminus of Threonine-3) and Lysine-6 are modified at higher DEPC concentrations, which led to the formation of an intermediate monomer structure. These modifications resulted in decreased extended monomer ion conformers, as well as a reduction in multimer formation. From the MDS experiments for the dimer ions, Lys6 residues in both monomer constituents interact with Ser16 and Glu12 residues on adjacent peptides; therefore, the decrease in multimer formation could result from disruption of these or similar interactions. This work provides a structurally selective model from which to study Nt17 self-association and provides critical insight toward Nt17 multimerization and, possibly, the early stages of huntingtin exon 1 aggregation.
Journal of Mass Spectrometry | 2015
James R. Arndt; Robert J. Brown; Kathleen A. Burke; Justin Legleiter; Stephen J. Valentine
Huntingtons disease is a genetic neurodegenerative disorder caused by an expansion in a polyglutamine domain near the N-terminus of the huntingtin (htt) protein that results in the formation of protein aggregates. Here, htt aggregate structure has been examined using hydrogen-deuterium exchange techniques coupled with tandem mass spectrometry. The focus of the study is on the 17-residue N-terminal flanking region of the peptide that has been shown to alter htt aggregation kinetics and morphology. A top-down sequencing strategy employing electron transfer dissociation is utilized to determine the location of accessible and protected hydrogens. In these experiments, peptides aggregate in a deuterium-rich solvent at neutral pH and are subsequently subjected to deuterium-hydrogen back-exchange followed by rapid quenching, disaggregation, and tandem mass spectrometry analysis. Electrospray ionization of the peptide solution produces the [M + 5H](5+) to [M + 10H](10+) charge states and reveals the presence of multiple peptide sequences differing by single glutamine residues. The [M + 7H](7+) to [M + 9](9+) charge states corresponding to the full peptide are used in the electron transfer dissociation analyses. Evidence for protected residues is observed in the 17-residue N-terminal tract and specifically points to lysine residues as potentially playing a significant role in htt aggregation.
Biophysical Journal | 2016
Maxmore Chaibva; Sudi Jawahery; Albert W. Pilkington; James R. Arndt; Olivia Sarver; Stephen J. Valentine; Silvina Matysiak; Justin Legleiter
Huntingtons disease (HD) is a genetic neurodegenerative disorder caused by an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ leads to htt aggregation. The first 17 amino acids (Nt(17)) in htt comprise a lipid-binding domain that undergoes a number of posttranslational modifications that can modulate htt toxicity and subcellular localization. As there are three lysines within Nt(17), we evaluated the impact of lysine acetylation on htt aggregation in solution and on model lipid bilayers. Acetylation of htt-exon1(51Q) and synthetic truncated htt-exon 1 mimicking peptides (Nt(17)-Q35-P10-KK) was achieved using a selective covalent label, sulfo-N-hydroxysuccinimide (NHSA). With this treatment, all three lysine residues (K6, K9, and K15) in Nt(17) were significantly acetylated. N-terminal htt acetylation retarded fibril formation in solution and promoted the formation of larger globular aggregates. Acetylated htt also bound lipid membranes and disrupted the lipid bilayer morphology less aggressively compared with the wild-type. Computational studies provided mechanistic insights into how acetylation alters the interaction of Nt(17) with lipid membranes. Our results highlight that N-terminal acetylation influences the aggregation of htt and its interaction with lipid bilayers.
Analytical Chemistry | 2015
Gregory C. Donohoe; James R. Arndt; Stephen J. Valentine
Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.
Biophysical Journal | 2015
James R. Arndt; Samaneh Ghassabi Kondalaji; Olivia Sarver; Megan M. Maurer; Arlo Parker; Justin Legleiter; Stephen J. Valentine
Huntingtin aggregate morphology and kinetics are modulated by the presence of two flanking sequences: a seventeen-residue α-helix (Nt17) which lies N-terminal to the amyloidogenic polyglutamine region; and a polyproline PPII helix that is C-terminal to the polyglutamine region. Nt17 is responsible for aggregate nucleation, and as such, represents an intriguing target for gaining structural insight into the early stages of N-terminal huntingtin aggregation. This study examined the secondary, tertiary, and quaternary arrangement of Nt17 using ion mobility-mass spectrometry (IMS-MS) coupled with condensed-phase covalent modification and gas-phase isotopic labeling. Monomeric Nt17 adopted two gas-phase conformations, which were derived from solution structures. These structures ranged from compact globular to elongated helical. Nt17 multimers followed the same pattern, again adopting structures varying from non-specific globule to bundled helix. Species ranging from the monomer up to the pentamer were observed. Covalent modification studies reveal threonine-3 and lysine-6 are solvent-exposed in the multimeric form. Additionally, polyproline, in a PPII helix conformation, was incubated with Nt17. Gas-phase isotopic labeling studies (hydrogen-deuterium exchange, HDX) on the two non-covalent complexes revealed nearly the same amount of deuterium uptake per Nt17 monomer in the complex, which suggests the same binding face is involved in Nt17 multimer and Nt17-Polyproline interactions. These results provide structural insight into Nt17 multimerization, and thus, the early stages of N-terminal huntingtin aggregation.