Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Broughman is active.

Publication


Featured researches published by James R. Broughman.


Science | 2016

Replication of human noroviruses in stem cell–derived human enteroids

Khalil Ettayebi; Sue E. Crawford; Kosuke Murakami; James R. Broughman; Umesh C. Karandikar; Victoria R. Tenge; Frederick H. Neill; Sarah E. Blutt; Xi-Lei Zeng; Lin Qu; Baijun Kou; Antone R. Opekun; Douglas G. Burrin; David Y. Graham; Sasirekha Ramani; Robert L. Atmar; Mary K. Estes

The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report the successful cultivation of multiple HuNoV strains in enterocytes in stem cell–derived, nontransformed human intestinal enteroid monolayer cultures. Bile, a critical factor of the intestinal milieu, is required for strain-dependent HuNoV replication. Lack of appropriate histoblood group antigen expression in intestinal cells restricts virus replication, and infectivity is abrogated by inactivation (e.g., irradiation, heating) and serum neutralization. This culture system recapitulates the human intestinal epithelium, permits human host-pathogen studies of previously noncultivatable pathogens, and allows the assessment of methods to prevent and treat HuNoV infections.


Journal of Virology | 2016

Human Intestinal Enteroids: A New Model to Study Human Rotavirus Infection, Host Restriction and Pathophysiology

Kapil Saxena; Sarah E. Blutt; Khalil Ettayebi; Xi Lei Zeng; James R. Broughman; Sue E. Crawford; Umesh C. Karandikar; Narayan P. Sastri; Margaret E. Conner; Antone R. Opekun; David Y. Graham; Waqar A. Qureshi; Vadim Sherman; Jennifer Foulke-Abel; Julie In; Olga Kovbasnjuk; Nicholas C. Zachos; Mark Donowitz; Mary K. Estes

ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of gastrointestinal infections such as HRV infection. HRVs remain a major worldwide cause of diarrhea-associated morbidity and mortality in children ≤5 years of age. Current in vitro models of rotavirus infection rely primarily on the use of animal rotaviruses because HRV growth is limited in most transformed cell lines and animal models. We demonstrate that HIEs are novel, cellularly diverse, and physiologically relevant epithelial cell cultures that recapitulate in vivo properties of HRV infection. HIEs will allow the study of HRV biology, including human host-pathogen and live, attenuated vaccine interactions; host and cell type restriction; virus-induced fluid secretion; cell-cell communication within the epithelium; and the epithelial response to infection in cultures from genetically diverse individuals. Finally, drug therapies to prevent/treat diarrheal disease can be tested in these physiologically active cultures.


Experimental Biology and Medicine | 2014

Human enteroids as an ex-vivo model of host–pathogen interactions in the gastrointestinal tract

Jennifer Foulke-Abel; Julie In; Olga Kovbasnjuk; Nicholas C. Zachos; Khalil Ettayebi; Sarah E. Blutt; Joseph M. Hyser; Xi Lei Zeng; Sue E. Crawford; James R. Broughman; Mary K. Estes; Mark Donowitz

Currently, 9 out of 10 experimental drugs fail in clinical studies. This has caused a 40% plunge in the number of drugs approved by the US Food and Drug Administration (FDA) since 2005. It has been suggested that the mechanistic differences between human diseases modeled in animals (mostly rodents) and the pathophysiology of human diseases might be one of the critical factors that contribute to drug failure in clinical trials. Rapid progress in the field of human stem cell technology has allowed the in-vitro recreation of human tissue that should complement and expand upon the limitations of cell and animal models currently used to study human diseases and drug toxicity. Recent success in the identification and isolation of human intestinal epithelial stem cells (Lgr5+) from the small intestine and colon has led to culture of functional intestinal epithelial units termed organoids or enteroids. Intestinal enteroids are comprised of all four types of normal epithelial cells and develop a crypt–villus differentiation axis. They demonstrate major intestinal physiologic functions, including Na+ absorption and Cl− secretion. This review discusses the recent progress in establishing human enteroids as a model of infectious diarrheal diseases such as cholera, rotavirus, and enterohemorrhagic Escherichia coli, and use of the enteroids to determine ways to correct the diarrhea-induced ion transport abnormalities via drug therapy.


Scientific Reports | 2017

Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

Lawrence Vernetti; Albert Gough; Nicholas W. Baetz; Sarah E. Blutt; James R. Broughman; Jacquelyn A. Brown; Jennifer Foulke-Abel; Nesrin M. Hasan; Julie In; Edward J. Kelly; Olga Kovbasnjuk; Jonathan Repper; Nina Senutovitch; Janet Stabb; Catherine K. Yeung; Nick Zachos; Mark Donowitz; Mary K. Estes; Jonathan Himmelfarb; George A. Truskey; John P. Wikswo; D. Lansing Taylor

Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements.


Journal of Virology | 2013

Activation of the Endoplasmic Reticulum Calcium Sensor STIM1 and Store-Operated Calcium Entry by Rotavirus Requires NSP4 Viroporin Activity

Joseph M. Hyser; Budi Utama; Sue E. Crawford; James R. Broughman; Mary K. Estes

ABSTRACT Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for virus replication, but the underlying mechanisms responsible for calcium influx remain poorly understood. NSP4 is an ER-localized viroporin, whose activity depletes ER calcium, which ultimately leads to calcium influx. We hypothesized that NSP4-mediated depletion of ER calcium activates store-operated calcium entry (SOCE) through activation of the ER calcium sensor stromal interaction molecule 1 (STIM1). We established and used a stable yellow fluorescent protein-expressing STIM1 cell line (YFP-STIM1) as a biosensor to assess STIM1 activation (puncta formation) by rotavirus infection and NSP4 expression. We found that STIM1 is constitutively active in rotavirus-infected cells and that STIM1 puncta colocalize with the PM-localized Orai1 SOCE calcium channel. Expression of wild-type NSP4 activated STIM1, resulting in PM calcium influx, but an NSP4 viroporin mutant failed to induce STIM1 activation and did not activate the PM calcium entry pathway. Finally, knockdown of STIM1 significantly reduced rotavirus yield, indicating STIM1 plays a critical role in virus replication. These data demonstrate that while rotavirus may ultimately activate multiple calcium channels in the PM, calcium influx is predicated on NSP4 viroporin-mediated activation of STIM1 in the ER. This is the first report of viroporin-mediated activation of SOCE, reinforcing NSP4 as a robust model to understand dysregulation of calcium homeostasis during virus infections.


Stem Cell Research & Therapy | 2013

Human enteroids: preclinical models of non-inflammatory diarrhea

Olga Kovbasnjuk; Nicholas C. Zachos; Julie In; Jennifer Foulke-Abel; Khalil Ettayebi; Joseph M. Hyser; James R. Broughman; Xi Lei Zeng; Sabine Middendorp; Hugo R. de Jonge; Mary K. Estes; Mark Donowitz

Researchers need an available and easy-to-use model of the human intestine to better understand human intestinal physiology and pathophysiology of diseases, and to offer an enhanced platform for developing drug therapy. Our work employs human enteroids derived from each of the major intestinal sections to advance understanding of several diarrheal diseases, including those caused by cholera, rotavirus and enterohemorrhagic Escherichia coli. An enteroid bank is being established to facilitate comparison of segmental, developmental, and regulatory differences in transport proteins that can influence therapy efficacy. Basic characterization of major ion transport protein expression, localization and function in the human enteroid model sets the stage to study the effects of enteric infection at the transport level, as well as to monitor potential responses to pharmacological intervention.


Journal of Virology | 2014

A novel form of rotavirus NSP2 and phosphorylation-dependent NSP2-NSP5 interactions are associated with viroplasm assembly

Jeanette Criglar; Liya Hu; Sue E. Crawford; Joseph M. Hyser; James R. Broughman; B. V. Venkataram Prasad; Mary K. Estes

ABSTRACT Rotavirus (RV) replication occurs in cytoplasmic inclusions called viroplasms whose formation requires the interactions of RV proteins NSP2 and NSP5; however, the specific role(s) of NSP2 in viroplasm assembly remains largely unknown. To study viroplasm formation in the context of infection, we characterized two new monoclonal antibodies (MAbs) specific for NSP2. These MAbs show high-affinity binding to NSP2 and differentially recognize distinct pools of NSP2 in RV-infected cells; a previously unrecognized cytoplasmically dispersed NSP2 (dNSP2) is detected by an N-terminal binding MAb, and previously known viroplasmic NSP2 (vNSP2) is detected by a C-terminal binding MAb. Kinetic experiments in RV-infected cells demonstrate that dNSP2 is associated with NSP5 in nascent viroplasms that lack vNSP2. As viroplasms mature, dNSP2 remains in viroplasms, and the amount of diffuse cytoplasmic dNSP2 increases. vNSP2 is detected in increasing amounts later in infection in the maturing viroplasm, suggesting a conversion of dNSP2 into vNSP2. Immunoprecipitation experiments and reciprocal Western blot analysis confirm that there are two different forms of NSP2 that assemble in complexes with NSP5, VP1, VP2, and tubulin. dNSP2 associates with hypophosphorylated NSP5 and acetylated tubulin, which is correlated with stabilized microtubules, while vNSP2 associates with hyperphosphorylated NSP5. Mass spectroscopy analysis of NSP2 complexes immunoprecipitated from RV-infected cell lysates show both forms of NSP2 are phosphorylated, with a greater proportion of vNSP2 being phosphorylated compared to dNSP2. Together, these data suggest that dNSP2 interacts with viral proteins, including hypophosphorylated NSP5, to initiate viroplasm formation, while viroplasm maturation includes phosphorylation of NSP5 and vNSP2.


Journal of Virology | 2016

Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response.

Lin Qu; Kosuke Murakami; James R. Broughman; Margarita K. Lay; Susana Guix; Victoria R. Tenge; Robert L. Atmar; Mary K. Estes

ABSTRACT Human noroviruses (HuNoVs), named after the prototype strain Norwalk virus (NV), are a leading cause of acute gastroenteritis outbreaks worldwide. Studies on the related murine norovirus (MNV) have demonstrated the importance of an interferon (IFN) response in host control of virus replication, but this remains unclear for HuNoVs. Despite the lack of an efficient cell culture infection system, transfection of stool-isolated NV RNA into mammalian cells leads to viral RNA replication and virus production. Using this system, we show here that NV RNA replication is sensitive to type I (α/β) and III (interleukin-29 [IL-29]) IFN treatment. However, in cells capable of a strong IFN response to Sendai virus (SeV) and poly(I·C), NV RNA replicates efficiently and generates double-stranded RNA without inducing a detectable IFN response. Replication of HuNoV genogroup GII.3 strain U201 RNA, generated from a reverse genetics system, also does not induce an IFN response. Consistent with a lack of IFN induction, NV RNA replication is enhanced neither by neutralization of type I/III IFNs through neutralizing antibodies or the soluble IFN decoy receptor B18R nor by short hairpin RNA (shRNA) knockdown of mitochondrial antiviral signaling protein (MAVS) or interferon regulatory factor 3 (IRF3) in the IFN induction pathways. In contrast to other positive-strand RNA viruses that block IFN induction by targeting MAVS for degradation, MAVS is not degraded in NV RNA-replicating cells, and an SeV-induced IFN response is not blocked. Together, these results indicate that HuNoV RNA replication in mammalian cells does not induce an IFN response, suggesting that the epithelial IFN response may play a limited role in host restriction of HuNoV replication. IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of epidemic gastroenteritis worldwide. Due to lack of an efficient cell culture system and robust small-animal model, little is known about the innate host defense to these viruses. Studies on murine norovirus (MNV) have shown the importance of an interferon (IFN) response in host control of MNV replication, but this remains unclear for HuNoVs. Here, we investigated the IFN response to HuNoV RNA replication in mammalian cells using Norwalk virus stool RNA transfection, a reverse genetics system, IFN neutralization reagents, and shRNA knockdown methods. Our results show that HuNoV RNA replication in mammalian epithelial cells does not induce an IFN response, nor can it be enhanced by blocking the IFN response. These results suggest a limited role of the epithelial IFN response in host control of HuNoV RNA replication, providing important insights into our understanding of the host defense to HuNoVs that differs from that to MNV.


Experimental Biology and Medicine | 2017

Gastrointestinal microphysiological systems

Sarah E. Blutt; James R. Broughman; Winnie Y. Zou; Xi Lei Zeng; Umesh C. Karandikar; Julie In; Nicholas C. Zachos; Olga Kovbasnjuk; Mark Donowitz; Mary K. Estes

Gastrointestinal diseases are a significant health care and economic burden. Prevention and treatment of these diseases have been limited by the available human biologic models. Microphysiological systems comprise organ-specific human cultures that recapitulate many structural, biological, and functional properties of the organ in smaller scale including aspects of flow, shear stress and chemical gradients. The development of intestinal microphysiological system platforms represents a critical component in improving our understanding, prevention, and treatment of gastrointestinal diseases. This minireview discusses: shortcomings of classical cell culture models of the gastrointestinal tract; human intestinal enteroids as a new model and their advantages compared to cell lines; why intestinal microphysiological systems are needed; potential functional uses of intestinal microphysiological systems in areas of drug development and modeling acute and chronic diseases; and current challenges in the development of intestinal microphysiological systems. Impact statement The development of a gastrointestinal MPS has the potential to facilitate the understanding of GI physiology. An ultimate goal is the integration of the intestinal MPS with other organ MPS. The development and characterization of nontransformed human intestinal cultures for use in MPS have progressed significantly since the inception of the MPS program in 2012, and these cultures are a key component of advancing MPS. Continued efforts are needed to optimize MPS to comprehensively and accurately recapitulate the complexity of the intestinal epithelium within intestinal tissue. These systems will need to include peristalsis, flow, and oxygen gradients, with incorporation of vascular, immune, and nerve cells. Regional cellular organization of crypt and villus areas will also be necessary to better model complete intestinal structure.


Gastroenterology | 2017

In Vitro Modeling of Human Enterohepatic Circulation Using Stem Cell-Derived Ileal Enteroids and Primary Cultures of Hepatocytes

Sarah E. Blutt; James R. Broughman; Larry Vernetti; Mary Elizabeth M. Tessier; Sue E. Crawford; Xi-Lei Zeng; Tor C. Savidge; Karl-Dimiter Bissig; Jennifer Foulke-Abel; Nicholas C. Zachos; Olga Kovbasnjuk; D. Lansing Taylor; Mark Donowitz; Mary K. Estes

Collaboration


Dive into the James R. Broughman's collaboration.

Top Co-Authors

Avatar

Mary K. Estes

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mark Donowitz

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sarah E. Blutt

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sue E. Crawford

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Olga Kovbasnjuk

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jennifer Foulke-Abel

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas C. Zachos

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Hyser

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Julie In

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge