Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Cole is active.

Publication


Featured researches published by James R. Cole.


Applied and Environmental Microbiology | 2007

Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy

Qiong Wang; George M Garrity; James M. Tiedje; James R. Cole

ABSTRACT The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergeys Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (≥95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergeys outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/ .


Nucleic Acids Research | 2009

The Ribosomal Database Project: improved alignments and new tools for rRNA analysis

James R. Cole; Qiong Wang; Erick Cardenas; Jordan A. Fish; Benli Chai; Ryan J. Farris; A. S. Kulam-Syed-Mohideen; Donna M. McGarrell; Terry L. Marsh; George M Garrity; James M. Tiedje

The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis features include a new Pyrosequencing Pipeline that provides tools to support analysis of ultra high-throughput rRNA sequencing data. This pipeline offers a collection of tools that automate the data processing and simplify the computationally intensive analysis of large sequencing libraries. In addition, a new Taxomatic visualization tool allows rapid visualization of taxonomic inconsistencies and suggests corrections, and a new class Assignment Generator provides instructors with a lesson plan and individualized teaching materials. Details about RDP data and analytical functions can be found at http://rdp.cme.msu.edu/.


Nucleic Acids Research | 2004

The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

James R. Cole; Benli Chai; Ryan J. Farris; Qiong Wang; S. A. Kulam; Donna M. McGarrell; George M Garrity; James M. Tiedje

The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is [email protected].


Nucleic Acids Research | 2014

Ribosomal Database Project: data and tools for high throughput rRNA analysis

James R. Cole; Qiong Wang; Jordan A. Fish; Benli Chai; Donna M. McGarrell; Yanni Sun; C. Titus Brown; Andrea Porras-Alfaro; Cheryl R. Kuske; James M. Tiedje

Ribosomal Database Project (RDP; http://rdp.cme.msu.edu/) provides the research community with aligned and annotated rRNA gene sequence data, along with tools to allow researchers to analyze their own rRNA gene sequences in the RDP framework. RDP data and tools are utilized in fields as diverse as human health, microbial ecology, environmental microbiology, nucleic acid chemistry, taxonomy and phylogenetics. In addition to aligned and annotated collections of bacterial and archaeal small subunit rRNA genes, RDP now includes a collection of fungal large subunit rRNA genes. RDP tools, including Classifier and Aligner, have been updated to work with this new fungal collection. The use of high-throughput sequencing to characterize environmental microbial populations has exploded in the past several years, and as sequence technologies have improved, the sizes of environmental datasets have increased. With release 11, RDP is providing an expanded set of tools to facilitate analysis of high-throughput data, including both single-stranded and paired-end reads. In addition, most tools are now available as open source packages for download and local use by researchers with high-volume needs or who would like to develop custom analysis pipelines.


Nucleic Acids Research | 2007

The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data

James R. Cole; Benli Chai; Ryan J. Farris; Qiong Wang; A. S. Kulam-Syed-Mohideen; Donna M. McGarrell; A. M. Bandela; Erick Cardenas; George M Garrity; James M. Tiedje

Substantial new features have been implemented at the Ribosomal Database Project in response to the increased importance of high-throughput rRNA sequence analysis in microbial ecology and related disciplines. The most important changes include quality analysis, including chimera detection, for all available rRNA sequences and the introduction of myRDP Space, a new web component designed to help researchers place their own data in context with the RDPs data. In addition, new video tutorials describe how to use RDP features. Details about RDP data and analytical functions can be found at the RDP-II website ().


Nucleic Acids Research | 1999

A new version of the RDP (Ribosomal Database Project)

Bonnie L. Maidak; James R. Cole; Charles T. Parker; George M Garrity; Niels Larsen; Bing Li; Timothy G. Lilburn; Michael J. McCaughey; Gary J. Olsen; Ross Overbeek; Sakti Pramanik; Thomas M. Schmidt; James M. Tiedje; Carl R. Woese

The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.


Nucleic Acids Research | 2001

rrndb: the Ribosomal RNA Operon Copy Number Database

Joel A. Klappenbach; Paul Saxman; James R. Cole; Thomas M. Schmidt

The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme. msu.edu.


Nucleic Acids Research | 2010

Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions

Marcus J. Claesson; Qiong Wang; Orla O'Sullivan; Rachel Greene-Diniz; James R. Cole; R. Paul Ross; Paul W. O'Toole

High-throughput molecular technologies can profile microbial communities at high resolution even in complex environments like the intestinal microbiota. Recent improvements in next-generation sequencing technologies allow for even finer resolution. We compared phylogenetic profiling of both longer (454 Titanium) sequence reads with shorter, but more numerous, paired-end reads (Illumina). For both approaches, we targeted six tandem combinations of 16S rRNA gene variable regions, in microbial DNA extracted from a human faecal sample, in order to investigate their limitations and potentials. In silico evaluations predicted that the V3/V4 and V4/V5 regions would provide the highest classification accuracies for both technologies. However, experimental sequencing of the V3/V4 region revealed significant amplification bias compared to the other regions, emphasising the necessity for experimental validation of primer pairs. The latest developments of 454 and Illumina technologies offered higher resolution compared to their previous versions, and showed relative consistency with each other. However, the majority of the Illumina reads could not be classified down to genus level due to their shorter length and higher error rates beyond 60 nt. Nonetheless, with improved quality and longer reads, the far greater coverage of Illumina promises unparalleled insights into highly diverse and complex environments such as the human gut.


Nucleic Acids Research | 2000

The RDP (Ribosomal Database Project) continues

Bonnie L. Maidak; James R. Cole; Timothy G. Lilburn; Charles Thomas Parker; Paul Saxman; Jason M. Stredwick; George M Garrity; Bing Li; Gary J. Olsen; Sakti Pramanik; Thomas M. Schmidt; James M. Tiedje

The Ribosomal Database Project (RDP-II), previously described by Maidak et al., continued during the past year to add new rRNA sequences to the aligned data and to improve the analysis commands. Release 7.1 (September 17, 1999) included more than 10 700 small subunit rRNA sequences. More than 850 type strain sequences were identified and added to the prokaryotic alignment, bringing the total number of type sequences to 3324 representing 2460 different species. Availability of an RDP-II mirror site in Japan is also near completion. RDP-II provides aligned and annotated rRNA sequences, derived phylogenetic trees and taxonomic hierarchies, and analysis services through its WWW server (http://rdp.cme.msu.edu/ ). Analysis services include rRNA probe checking, approx-i-mate phylogenetic placement of user sequences, screening user sequences for possible chimeric rRNA sequences, automated alignment, production of similarity matrices and services to plan and analyze terminal restriction fragment length polymorphism (T-RFLP) experiments.


Proceedings of the National Academy of Sciences of the United States of America | 2012

In-feed antibiotic effects on the swine intestinal microbiome.

Torey Looft; Timothy A. Johnson; Heather K. Allen; Darrell O. Bayles; David P. Alt; Robert D. Stedtfeld; Woo Jun Sul; Tiffany M. Stedtfeld; Benli Chai; James R. Cole; Syed A. Hashsham; James M. Tiedje; Thad B. Stanton

Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1–11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.

Collaboration


Dive into the James R. Cole's collaboration.

Top Co-Authors

Avatar

James M. Tiedje

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Benli Chai

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Qiong Wang

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George M. Garrity

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Tindall

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Researchain Logo
Decentralizing Knowledge