Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Green is active.

Publication


Featured researches published by James R. Green.


Advances in Biochemical Engineering \/ Biotechnology | 2008

Computational Methods For Predicting Protein–Protein Interactions

Sylvain Pitre; Alamgir; James R. Green; Michel Dumontier; Frank K. H. A. Dehne; Ashkan Golshani

Protein-protein interactions (PPIs) play a critical role in many cellular functions. A number of experimental techniques have been applied to discover PPIs; however, these techniques are expensive in terms of time, money, and expertise. There are also large discrepancies between the PPI data collected by the same or different techniques in the same organism. We therefore turn to computational techniques for the prediction of PPIs. Computational techniques have been applied to the collection, indexing, validation, analysis, and extrapolation of PPI data. This chapter will focus on computational prediction of PPI, reviewing a number of techniques including PIPE, developed in our own laboratory. For comparison, the conventional large-scale approaches to predict PPIs are also briefly discussed. The chapter concludes with a discussion of the limitations of both experimental and computational methods of determining PPIs.


Nucleic Acids Research | 2008

Global investigation of protein–protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences

Sylvain Pitre; C. North; M. Alamgir; M. Jessulat; Albert Chan; X. Luo; James R. Green; Michel Dumontier; Frank K. H. A. Dehne; Ashkan Golshani

Protein–protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can be computationally predicted using re-occurring short polypeptide sequences between known interacting protein pairs. However, the computational requirements and low specificity made this method unsuitable for large-scale investigations. Here, we report an improved approach, which exhibits a specificity of ∼99.95% and executes 16 000 times faster. Importantly, we report the first all-to-all sequence-based computational screen of PPIs in yeast, Saccharomyces cerevisiae in which we identify 29 589 high confidence interactions of ∼2 × 107 possible pairs. Of these, 14 438 PPIs have not been previously reported and may represent novel interactions. In particular, these results reveal a richer set of membrane protein interactions, not readily amenable to experimental investigations. From the novel PPIs, a novel putative protein complex comprised largely of membrane proteins was revealed. In addition, two novel gene functions were predicted and experimentally confirmed to affect the efficiency of non-homologous end-joining, providing further support for the usefulness of the identified PPIs in biological investigations.


Journal of Biomedical Informatics | 2002

Computational selection of distinct class- and subclass-specific gene expression signatures

Pierre R. Bushel; Hisham K. Hamadeh; Lee Bennett; James R. Green; Alan Ableson; Stephen Misener; Cynthia A. Afshari; Richard S. Paules

In this investigation we used statistical methods to select genes with expression profiles that partition classes and subclasses of biological samples. Gene expression data corresponding to liver samples from rats treated for 24 h with an enzyme inducer (phenobarbital) or a peroxisome proliferator (clofibrate, gemfibrozil or Wyeth 14,643) were subjected to a modified Z-score test to identify gene outliers and a binomial distribution to reduce the probability of detecting genes as differentially expressed by chance. Hierarchical clustering of 238 statistically valid differentially expressed genes partitioned class-specific gene expression signatures into groups that clustered samples exposed to the enzyme inducer or to peroxisome proliferators. Using analysis of variance (ANOVA) and linear discriminant analysis methods we identified single genes as well as coupled gene expression profiles that separated the phenobarbital from the peroxisome proliferator treated samples and discerned the fibrate (gemfibrozil and clofibrate) subclass of peroxisome proliferators. A comparison of genes ranked by ANOVA with genes assessed as significant by mixedlinear models analysis [J. Comput. Biol. 8 (2001) 625] or ranked by information gain revealed good congruence with the top 10 genes from each statistical method in the contrast between phenobarbital and peroxisome proliferators expression profiles. We propose building upon a classification regimen comprised of analysis of replicate data, outlier diagnostics and gene selection procedures to utilize cDNA microarray data to categorize subclasses of samples exposed to pharmacologic agents.


RNA | 2010

Computational approaches toward the design of pools for the in vitro selection of complex aptamers.

Xuemei Luo; Maureen McKeague; Sylvain Pitre; Michel Dumontier; James R. Green; Ashkan Golshani; Maria C. DeRosa; Frank K. H. A. Dehne

It is well known that using random RNA/DNA sequences for SELEX experiments will generally yield low-complexity structures. Early experimental results suggest that having a structurally diverse library, which, for instance, includes high-order junctions, may prove useful in finding new functional motifs. Here, we develop two computational methods to generate sequences that exhibit higher structural complexity and can be used to increase the overall structural diversity of initial pools for in vitro selection experiments. Random Filtering selectively increases the number of five-way junctions in RNA/DNA pools, and Genetic Filtering designs RNA/DNA pools to a specified structure distribution, whether uniform or otherwise. We show that using our computationally designed DNA pool greatly improves access to highly complex sequence structures for SELEX experiments (without losing our ability to select for common one-way and two-way junction sequences).


Scientific Reports | 2012

Short Co-occurring Polypeptide Regions Can Predict Global Protein Interaction Maps

Sylvain Pitre; Mohsen Hooshyar; Andrew Schoenrock; Bahram Samanfar; Matthew Jessulat; James R. Green; Frank K. H. A. Dehne; Ashkan Golshani

A goal of the post-genomics era has been to elucidate a detailed global map of protein-protein interactions (PPIs) within a cell. Here, we show that the presence of co-occurring short polypeptide sequences between interacting protein partners appears to be conserved across different organisms. We present an algorithm to automatically generate PPI prediction method parameters for various organisms and illustrate that global PPIs can be predicted from previously reported PPIs within the same or a different organism using protein primary sequences. The PPI prediction code is further accelerated through the use of parallel multi-core programming, which improves its usability for large scale or proteome-wide PPI prediction. We predict and analyze hundreds of novel human PPIs, experimentally confirm protein functions and importantly predict the first genome-wide PPI maps for S. pombe (∼9,000 PPIs) and C. elegans (∼37,500 PPIs).


IEEE Transactions on Instrumentation and Measurement | 2014

Automated Biosignal Quality Analysis for Electromyography Using a One-Class Support Vector Machine

Graham D. Fraser; Adrian D. C. Chan; James R. Green; Dawn MacIsaac

This paper introduces the importance of biosignal quality assessment and presents a pattern classification approach to differentiate clean from contaminated electromyography (EMG) signals. Alternatively to traditional bottom-up approaches, which examine specific contaminants only, we present a top-down approach using a one-class support vector machine (SVM) trained on clean EMG and tested on artificially contaminated EMG. Both simulated and real EMG are used. Results are evaluated for each contaminant: 1) power line interference; 2) motion artifact; 3) ECG interference; 4) quantization noise; 5) analog-to-digital converter clipping; and 6) amplifier saturation, as a function of the level of signal contamination. Results show that different ranges of contamination can be detected in the EMG depending on the type of contaminant. At high levels of contamination, the SVM classifies all EMG signals as contaminated, whereas at low levels of contamination, it classifies the majority of EMG signals as contaminant free. A transition point for each contaminant is identified, where the classification accuracy drops and variance in classification increases. In some cases, contamination can be detected with the SVM when it is not visually discernible. This method is shown to be successful in detecting problems due to single contaminants but is generic to all forms of contamination in EMG.


IEEE Reviews in Biomedical Engineering | 2013

Implementation of Artifact Detection in Critical Care: A Methodological Review

Shermeen Nizami; James R. Green; Carolyn McGregor

Artifact detection (AD) techniques minimize the impact of artifacts on physiologic data acquired in critical care units (CCU) by assessing quality of data prior to clinical event detection (CED) and parameter derivation (PD). This methodological review introduces unique taxonomies to synthesize over 80 AD algorithms based on these six themes: 1) CCU; 2) physiologic data source; 3) harvested data; 4) data analysis; 5) clinical evaluation; and 6) clinical implementation. Review results show that most published algorithms: a) are designed for one specific type of CCU; b) are validated on data harvested only from one OEM monitor; c) generate signal quality indicators (SQI) that are not yet formalized for useful integration in clinical workflows; d) operate either in standalone mode or coupled with CED or PD applications; e) are rarely evaluated in real-time; and f) are not implemented in clinical practice. In conclusion, it is recommended that AD algorithms conform to generic input and output interfaces with commonly defined data: 1) type; 2) frequency; 3) length; and 4) SQIs. This shall promote: a) reusability of algorithms across different CCU domains; b) evaluation on different OEM monitor data; c) fair comparison through formalized SQIs; d) meaningful integration with other AD, CED and PD algorithms; and e) real-time implementation in clinical workflows.


BMC Bioinformatics | 2015

ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins

Yasser B. Ruiz-Blanco; Waldo Paz; James R. Green; Yovani Marrero-Ponce

BackgroundThe exponential growth of protein structural and sequence databases is enabling multifaceted approaches to understanding the long sought sequence-structure-function relationship. Advances in computation now make it possible to apply well-established data mining and pattern recognition techniques to these data to learn models that effectively relate structure and function. However, extracting meaningful numerical descriptors of protein sequence and structure is a key issue that requires an efficient and widely available solution.ResultsWe here introduce ProtDCal, a new computational software suite capable of generating tens of thousands of features considering both sequence-based and 3D-structural descriptors. We demonstrate, by means of principle component analysis and Shannon entropy tests, how ProtDCal’s sequence-based descriptors provide new and more relevant information not encoded by currently available servers for sequence-based protein feature generation. The wide diversity of the 3D-structure-based features generated by ProtDCal is shown to provide additional complementary information and effectively completes its general protein encoding capability. As demonstration of the utility of ProtDCal’s features, prediction models of N-linked glycosylation sites are trained and evaluated. Classification performance compares favourably with that of contemporary predictors of N-linked glycosylation sites, in spite of not using domain-specific features as input information.ConclusionsProtDCal provides a friendly and cross-platform graphical user interface, developed in the Java programming language and is freely available at: http://bioinf.sce.carleton.ca/ProtDCal/. ProtDCal introduces local and group-based encoding which enhances the diversity of the information captured by the computed features. Furthermore, we have shown that adding structure-based descriptors contributes non-redundant additional information to the features-based characterization of polypeptide systems. This software is intended to provide a useful tool for general-purpose encoding of protein sequences and structures for applications is protein classification, similarity analyses and function prediction.


Expert Opinion on Drug Discovery | 2011

Recent advances in protein-protein interaction prediction: experimental and computational methods.

Matthew Jessulat; Sylvain Pitre; Yuan Gui; Mohsen Hooshyar; Katayoun Omidi; Bahram Samanfar; Le Hoa Tan; Alamgir; James R. Green; Frank K. H. A. Dehne; Ashkan Golshani

Introduction: Proteins within the cell act as part of complex networks, which allow pathways and processes to function. Therefore, understanding how proteins interact is a significant area of current research. Areas covered: This review aims to present an overview of key experimental techniques (yeast two-hybrid, tandem affinity purification and protein microarrays) used to discover protein–protein interactions (PPIs), as well as to briefly discuss certain computational methods for predicting protein interactions based on gene localization, phylogenetic information, 3D structural modeling or primary protein sequence data. Due to the large-scale applicability of primary sequence-based methods, the authors have chosen to focus on this strategy for our review. There is an emphasis on a recent algorithm called Protein Interaction Prediction Engine (PIPE) that can predict global PPIs. The readers will discover recent advances both in the practical determination of protein interaction and the strategies that are available to attempt to anticipate interactions without the time and costs of experimental work. Expert opinion: Global PPI maps can help understand the biology of complex diseases and facilitate the identification of novel drug target sites. This study describes different techniques used for PPI prediction that we believe will significantly impact the development of the field in a new future. We expect to see a growing number of similar techniques capable of large-scale PPI predictions.


BMC Bioinformatics | 2009

PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

James R. Green; Michael J. Korenberg; Mohammed O Aboul-Magd

BackgroundSince the function of a protein is largely dictated by its three dimensional configuration, determining a proteins structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures) from primary sequence data which makes use of Parallel Cascade Identification (PCI), a powerful technique from the field of nonlinear system identification.ResultsUsing PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs) are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP) interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input protein sequence data and also to encode the resulting structure prediction in a machine-readable format. To our knowledge, this represents the only publicly available SOAP-interface for a protein secondary structure prediction service with published WSDL interface definition.ConclusionRelative to the 9 contemporary methods included in the comparison cascaded PCI classifiers perform well, however PCI finds greatest application as a consensus classifier. When PCI is used to combine a sequence-to-structure PCI-based classifier with the current leading ANN-based method, PSIPRED, the overall error rate (Q3) is maintained while the rate of occurrence of a particularly detrimental error is reduced by up to 25%. This improvement in BAD score, combined with the machine-readable SOAP web service interface makes PCI-SS particularly useful for inclusion in a tertiary structure prediction pipeline.

Collaboration


Dive into the James R. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn MacIsaac

University of New Brunswick

View shared research outputs
Researchain Logo
Decentralizing Knowledge