Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Hammond is active.

Publication


Featured researches published by James R. Hammond.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Equilibrative nucleoside transporter 1 plays an essential role in cardioprotection

Jennifer B. Rose; Zlatina Naydenova; Andrew Bang; Megumi Eguchi; Gary Sweeney; Doo Sup Choi; James R. Hammond; Imogen R. Coe

To better understand the role of equilibrative nucleoside transporters (ENT) in purine nucleoside-dependent physiology of the cardiovascular system, we investigated whether the ENT1-null mouse heart was cardioprotected in response to ischemia (coronary occlusion for 30 min followed by reperfusion for 2 h). We observed that ENT1-null mouse hearts showed significantly less myocardial infarction compared with wild-type littermates. We confirmed that isolated wild-type adult mouse cardiomyocytes express predominantly ENT1, which is primarily responsible for purine nucleoside uptake in these cells. However, ENT1-null cardiomyocytes exhibit severely impaired nucleoside transport and lack ENT1 transcript and protein expression. Adenosine receptor expression profiles and expression levels of ENT2, ENT3, and ENT4 were similar in cardiomyocytes isolated from ENT1-null adult mice compared with cardiomyocytes isolated from wild-type littermates. Moreover, small interfering RNA knockdown of ENT1 in the cardiomyocyte cell line, HL-1, mimics findings in ENT1-null cardiomyocytes. Taken together, our data demonstrate that ENT1 plays an essential role in cardioprotection, most likely due to its effects in modulating purine nucleoside-dependent signaling and that the ENT1-null mouse is a powerful model system for the study of the role of ENTs in the physiology of the cardiomyocyte.


British Journal of Pharmacology | 2004

Nucleoside transporter subtype expression and function in rat skeletal muscle microvascular endothelial cells.

Richard G.E. Archer; Vaclav Pitelka; James R. Hammond

Microvascular endothelial cells (MVECs) form a barrier between circulating metabolites, such as adenosine, and the surrounding tissue. We hypothesize that MVECs have a high capacity for the accumulation of nucleosides, such that inhibition of the endothelial nucleoside transporters (NT) would profoundly affect the actions of adenosine in the microvasculature. We assessed the binding of [3H]nitrobenzylmercaptopurine riboside (NBMPR), a specific probe for the inhibitor‐sensitive subtype of equilibrative NT (es), and the uptake of [3H]formycin B (FB), by MVECs isolated from rat skeletal muscle. The cellular expression of equilibrative (ENT1, ENT2, ENT3) and concentrative (CNT1, CNT2, CNT3) NT subtypes was also determined using both qualitative and quantitative polymerase chain reaction techniques. In the absence of Na+, MVECs accumulated [3H]FB with a Vmax of 21±1 pmol μl−1 s−1. This uptake was mediated equally by es (Km 260±70 μM) and ei (equilibrative inhibitor‐insensitive; Km 130±20 μM) NTs. A minor component of Na+‐dependent cif (concentrative inhibitor‐insensitive FB transporter)/CNT2‐mediated [3H]FB uptake (Vi 0.008±0.005 pmol μl−1 s−1 at 10 μM) was also observed at room temperature upon inhibition of ENTs with dipyridamole (2,6‐bis(diethanolamino)‐4,8‐dipiperidinopyrimido‐[5,4‐d]pyrimidine)/NBMPR. MVECs had 122,000 high‐affinity (Kd 0.10 nM) [3H]NBMPR binding sites (representing es transporters) per cell. A lower‐affinity [3H]NBMPR binding component (Kd 4.8 nM) was also observed that may be related to intracellular es‐like proteins. Rat skeletal muscle MVECs express es/ENT1, ei/ENT2, and cif/CNT2 transporters with characteristics typical of rat tissues. This primary cell culture model will enable future studies on factors influencing NT subtype expression, and the consequent effect on adenosine bioactivity, in the microvasculature.


Journal of Bone and Mineral Research | 2013

Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans

Sumeeta Warraich; Derek B.J. Bone; Diana Quinonez; Hisataka; Doo Sup Choi; David W. Holdsworth; Maria Drangova; S. Jeffrey Dixon; Cheryle A. Séguin; James R. Hammond

Diffuse idiopathic skeletal hyperostosis (DISH) is a noninflammatory spondyloarthropathy, characterized by ectopic calcification of spinal tissues. Symptoms include spine pain and stiffness, and in severe cases dysphagia and spinal cord compression. The etiology of DISH is unknown and there are no specific treatments. Recent studies have suggested a role for purine metabolism in the regulation of biomineralization. Equilibrative nucleoside transporter 1 (ENT1) transfers hydrophilic nucleosides, such as adenosine, across the plasma membrane. In mice lacking ENT1, we observed the development of calcified lesions resembling DISH. By 12 months of age, ENT1–/– mice exhibited signs of spine stiffness, hind limb dysfunction, and paralysis. Micro–computed tomography (µCT) revealed ectopic mineralization of paraspinal tissues in the cervical‐thoracic region at 2 months of age, which extended to the lumbar and caudal regions with advancing age. Energy‐dispersive X‐ray microanalysis of lesions revealed a high content of calcium and phosphorus with a ratio similar to that of cortical bone. At 12 months of age, histological examination of ENT1–/– mice revealed large, irregular accumulations of eosinophilic material in paraspinal ligaments and entheses, intervertebral discs, and sternocostal articulations. There was no evidence of mineralization in appendicular joints or blood vessels, indicating specificity for the axial skeleton. Plasma adenosine levels were significantly greater in ENT1–/– mice than in wild‐type, consistent with loss of ENT1—a primary adenosine uptake pathway. There was a significant reduction in the expression of Enpp1, Ank, and Alpl in intervertebral discs from ENT1–/– mice compared to wild‐type mice. Elevated plasma levels of inorganic pyrophosphate in ENT1–/– mice indicated generalized disruption of pyrophosphate homeostasis. This is the first report of a role for ENT1 in regulating the calcification of soft tissues. Moreover, ENT1–/– mice may be a useful model for investigating pathogenesis and evaluating therapeutics for the prevention of mineralization in DISH and related disorders.


Molecular Membrane Biology | 2007

Differential regulation of mouse equilibrative nucleoside transporter 1 (mENT1) splice variants by protein kinase CK2.

Derek B.J. Bone; Kevin R. Robillard; Meaghan Stolk; James R. Hammond

Nucleosides are accumulated by cells via a family of equilibrative transport proteins (ENTs). An alternative splice variant of the most common subtype of mouse ENT (ENT1) has been identified which is missing a protein kinase CK2 (casein kinase 2) consensus site (Ser254) in the central intracellular loop of the protein. We hypothesized that this variant (mENT1a) would be less susceptible to modulation by CK2-mediated phosphorylation compared to the variant containing the serine at position 254 (mENT1b). Each splice variant was transfected into nucleoside transporter deficient PK15 cells, and stable transfectants assessed for their ability to bind the ENT1-selective probe [3H]nitrobenzylthioinosine (NBMPR) and to mediate the cellular uptake of [3H]2-chloroadenosine, with or without treatment with the CK2 selective inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB). mENT1a had a higher affinity for NBMPR relative to mENT1b – measured both directly by the binding of [3H]NBMPR, and indirectly via inhibition of [3H]2-chloroadenosine influx by NBMPR. Furthermore, incubation of mENT1b-expressing cells with 10 µM TBB for 48 h decreased both the KD and Bmax of [3H]NBMPR binding, as well as the Vmax of 2-chloroadenosine uptake, whereas similar treatment of mENT1a-expressing cells with TBB had no effect. PK15 cells transfected with hENT1, which has Ser254, was similar to mENT1b in its response to TBB. In conclusion, inhibition of CK2 activity, or deletion of Ser254 from mENT1, enhances transporter affinity for the inhibitor, NBMPR, and reduces the number of ENT1 proteins functioning at the level of the plasma membrane.


Life Sciences | 2011

Absence of equilibrative nucleoside transporter 1 in ENT1 knockout mice leads to altered nucleoside levels following hypoxic challenge

Jennifer B. Rose; Zlatina Naydenova; Andrew Bang; Azza Ramadan; Jost Klawitter; Kristin Schram; Gary Sweeney; Almut Grenz; Holger K. Eltzschig; James R. Hammond; Doo Sup Choi; Imogen R. Coe

AIMS Equilibrative nucleoside transporters (ENT) modulate the flux of adenosine. The ENT1-null (KO) mouse heart is endogenously cardioprotected but the cellular basis of this phenotype is unknown. Therefore, we investigated the cellular mechanisms underlying ENT1-mediated cardioprotection. MAIN METHODS Circulating adenosine levels were measured in WT and KO mice. Cellular levels of nucleosides and nucleotides were investigated in isolated adult cardiomyocytes from WT and KO mice using HPLC following hypoxic challenge (30 min, 2% O(2)). Changes in hypoxic gene expression were analyzed by PCR arrays and cAMP levels were measured to investigate contributions from adenosine receptors. KEY FINDINGS Circulating adenosine levels were significantly higher in KO (416±42nmol/l, n=12) compared to WT animals (208±21, n=13, p<0.001). Absence of ENT1 led to an elevated expression of genes involved in cardioprotective pathways compared to WT cardiomyocytes. Following hypoxic challenge, extracellular adenosine levels were significantly elevated in KO (4360±1840 pmol/mg protein) versus WT cardiomyocytes (3035±730 pmol/mg protein, n≥12, p<0.05). This effect was enhanced in the presence of dipyridamole (30 μM), which inhibits ENT1 and ENT2. Enhanced extracellular adenosine levels in ENT1-null cardiomyocytes appeared to come from a pool of extracellular nucleotides including IMP, AMP and ADP. Adenosine receptor (AR) activation mimicked increases in cAMP levels due to hypoxic challenge suggesting that ENT1 modulates AR-dependent signaling. SIGNIFICANCE ENT1 contributes to modulation of extracellular adenosine levels and subsequent purinergic signaling via ARs. ENT1-null mice possess elevated circulating adenosine levels and reduced cellular uptake resulting in a perpetually cardioprotected phenotype.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Nucleoside/nucleobase transport and metabolism by microvascular endothelial cells isolated from ENT1 -/- mice.

Derek B.J. Bone; Doo Sup Choi; Imogen R. Coe; James R. Hammond

Nucleoside and nucleobase uptake is integral to mammalian cell function, and its disruption has significant effects on the cardiovasculature. The predominant transporters in this regard are the equilibrative nucleoside transporter subtypes 1 (ENT1) and 2 (ENT2). To examine the role of ENT1 in more detail, we have assessed the mechanisms by which microvascular endothelial cells (MVECs) from ENT1(-/-) mice transport and metabolize nucleosides and nucleobases. Wild-type murine MVECs express mainly the ENT1 subtype with only trace levels of ENT2. These cells also have a Na(+)-independent equilibrative nucleobase transport mechanism for hypoxanthine (ENBT1). In the ENT1(-/-) cells, there is no change in ENT2 or ENBT1, resulting in a very low level of nucleoside uptake in these cells, but a high capacity for nucleobase accumulation. Whereas there were no significant changes in nucleoside transporter subtype expression, there was a dramatic increase in adenosine deaminase and adenosine A(2a) receptors (both transcript and protein) in the ENT1(-/-) tissues compared with WT. These changes in adenosine deaminase and A(2a) receptors likely reflect adaptive cellular mechanisms in response to reduced adenosine flux across the membranes of ENT1(-/-) cells. Our study also revealed that mouse MVECs have a nucleoside/nucleobase transport profile that is more similar to human MVECs than to rat MVECs. Thus mouse MVECs from transgenic animals may prove to be a useful preclinical model for studies of the effects of purine metabolite modifiers on vascular function.


Brain Research | 1994

Effect of cellular differentiation on nucleoside transport in human neuroblastoma cells

Kenneth W. Jones; R. Jane Rylett; James R. Hammond

The nucleoside transport characteristics of undifferentiated and differentiated LA-N-2 human neuroblastoma cells were compared through measurement of the cellular accumulation of [3H]formycin B in the absence and presence of specific nucleoside transport blockers such as dipyridamole and nitrobenzylthioinosine (NBMPR). [3H]NBMPR was also used as a high affinity probe to obtain an estimate of the number of NBMPR-sensitive nucleoside transport proteins. Undifferentiated LA-N-2 cells accumulated [3H]formycin B (25 microM) via a NBMPR/dipyridamole sensitive, Na(+)-independent, nucleoside transport system (Vi = 1.52 pmol/microliters/s; maximum intracellular concentration = 45 pmol/microliters cell water). The undifferentiated cells also had a high density of site-specific [3H]NBMPR binding sites (135,000 sites/cell; KD = 0.4 nM). When cell differentiation was induced by exposure to a serum-free defined medium, the initial rate of transporter-mediated [3H]formycin B uptake increased to 1.92 pmol/microliters/s, and the steady-state intracellular concentration of [3H]formycin B also increased significantly to 73 pmol/microliters. However, there was no concomitant change in the number of [3H]NBMPR binding sites, and the additional uptake was not Na(+)-dependent. This enhanced uptake in the differentiated cells appeared to be due, in part, to an increased functional expression of a NBMPR-resistant form of facilitated nucleoside transporter. Approximately 18% of the transporter-mediated uptake in the differentiated cells was resistant to inhibition by NBMPR at concentrations that blocked transport completely in the undifferentiated cells. This cell model may prove useful for basic studies on regulation of nucleoside transporter subtype expression in neural tissues, and for evaluation of the efficacy and potential host toxicity of cytotoxic nucleoside analogues (+/- specific transport blockers) in the treatment of neuroblastoma.


Molecular Pharmacology | 2008

Characterization of mENT1Δ11, a Novel Alternative Splice Variant of the Mouse Equilibrative Nucleoside Transporter 1

Kevin R. Robillard; Derek B.J. Bone; Jamie S. Park; James R. Hammond

Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1Δ11) missing the last three transmembrane domains of the full-length mENT1. The mENT1Δ11 transcript and protein were found to be differentially distributed among tissues relative to full-length mENT1. PK15-NTD (nucleoside transport deficient) cells were transfected with mENT1 or mENT1Δ11 and assessed for nucleoside transport function. No significant differences were observed between the mENT1 and mENT1Δ11 in terms of transport function or inhibitor binding affinity. PK15-mENT1Δ11 transfected cells bound the ENT1 probe [3H]nitrobenzylthioinosine (NBMPR) with high affinity and mediated the cellular accumulation of both [3H]2-chloroadenosine and [3H]uridine. The only significant differences between the mENT1 variants were that mENT1Δ11 could not be photolabeled with [3H]NBMPR and that mENT1Δ11 was insensitive to the transporter-modifying effects of N-ethylmaleimide. These data suggest that the last three transmembrane domains of mENT1 are not necessary for transport activity, but this region does contain the cysteines responsible for the sensitivity of mENT1 to sulfhydryl reagents, and the residues important for covalent modification of the protein with NBMPR. These results provide important guidelines for future mutagenesis studies aimed at elucidating the tertiary structure of the ENT1 protein and the domains involved in inhibitor binding and substrate translocation.


Molecular Pharmacology | 2012

Cysteine Residues in the Transmembrane (TM) 9 to TM11 Region of the Human Equilibrative Nucleoside Transporter Subtype 1 Play an Important Role in Inhibitor Binding and Translocation Function

Jamie S. Park; James R. Hammond

Inhibitor and substrate interactions with equilibrative nucleoside transporter 1 (ENT1; SLC29A1) are known to be affected by cysteine-modifying reagents. A previous study from our laboratory established Cys222 in transmembrane (TM) 6 as the residue responsible for methyl methanethiosulfonate (a membrane-permeable sulfhydryl modifier)-mediated enhancement of the binding of the ENT1 inhibitor nitrobenzylmercaptopurine riboside (NBMPR) in intact cells. However, the capacity of charged sulfhydryl reagents to inhibit the binding of NBMPR in broken cell preparations (allowing cytoplasmic access) was not affected by mutation of any of the cysteines (Cys87, 193, 213, or 222) in the N-terminal half of the protein. We thus hypothesized that the inhibitory effects of the modifiers were due to the one or more of the six cysteine residues in the C-terminal half of ENT1, particularly one or both of those in the fifth intracellular loop (Cys414 and Cys416). Each of the cysteines were mutated to serine or alanine and expressed in nucleoside transport-deficient PK15 cells and probed with a series of methanethiosulfonate sulfhydryl-modifying reagents. Transporter function was assessed by the site-specific binding of [3H]NBMPR and the cellular uptake of [3H]2-chloroadenosine. These studies established that Cys378 is an extracellular-located residue modified by [2-(trimethylammonium)ethyl] methane-thiosulfonate (MTSET) to inhibit the binding of NBMPR to intact cells. Mutation of Cys414 led to an enhancement of the ability of MTSET to inhibit NBMPR binding, and this enhancement was eliminated by the comutation of Cys378, indicating that disruption of the fifth intracellular loop modifies the conformation of TM10 and its extracellular extension. Mutation of Cys416 led to the loss of the ability of the charged sulfhydryl reagents to inhibit NBMPR binding in isolated membranes and also led to the loss of transport function. This finding further supports an allosteric interaction between the fifth intracellular loop and the extracellular NBMPR binding domain and implicates this region in the translocation function of human ENT1.


Molecular Pharmacology | 2011

Identification of Cysteines Involved in the Effects of Methanethiosulfonate Reagents on Human Equilibrative Nucleoside Transporter 1

Jamie S. Park; Scott J. Hughes; Frances K. M. Cunningham; James R. Hammond

Inhibitor and substrate interactions with equilibrative nucleoside transporter 1 (ENT1; SLC29A1) are known to be affected by cysteine-modifying reagents. Given that selective ENT1 inhibitors, such as nitrobenzylmercaptopurine riboside (NBMPR), bind to the N-terminal half of the ENT1 protein, we hypothesized that one or more of the four cysteine residues in this region were contributing to the effects of the sulfhydryl modifiers. Recombinant human ENT1 (hENT1), and the four cysteine-serine ENT1 mutants, were expressed in nucleoside transport-deficient PK15 cells and probed with a series of methanethiosulfonate (MTS) sulfhydryl-modifying reagents. Transporter function was assessed by the binding of [3H]NBMPR and the cellular uptake of [3H]2-chloroadenosine. The membrane-permeable reagent methyl methanethiosulfonate (MMTS) enhanced [3H]NBMPR binding in a pH-dependent manner, but decreased [3H]2-chloroadenosine uptake. [2-(Trimethylammonium)ethyl] methane-thiosulfonate (MTSET) (positively charged, membrane-impermeable), but not sodium (2-sulfonatoethyl)-methanethiosulfonate (MTSES) (negatively charged), inhibited [3H]NBMPR binding and enhanced [3H]2-chloroadenosine uptake. Mutation of Cys222 in transmembrane (TM) 6 eliminated the effect of MMTS on NBMPR binding. Mutation of Cys193 in TM5 enhanced the ability of MMTS to increase [3H]NBMPR binding and attenuated the effects of MMTS and MTSET on [3H]2-chloroadenosine uptake. Taken together, these data suggest that Cys222 contributes to the effects of MTS reagents on [3H]NBMPR binding, and Cys193 is involved in the effects of these reagents on [3H]2-chloroadenosine transport. The results of this study also indicate that the hENT1-C193S mutant may be useful as a MTSET/MTSES-insensitive transporter for future cysteine substitution studies to define the extracellular domains contributing to the binding of substrates and inhibitors to this critical membrane transporter.

Collaboration


Dive into the James R. Hammond's collaboration.

Top Co-Authors

Avatar

Derek B.J. Bone

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie S. Park

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Kevin R. Robillard

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Meaghan Stolk

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Richard G.E. Archer

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Quinonez

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge