Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Hitchin is active.

Publication


Featured researches published by James R. Hitchin.


Analytical Biochemistry | 2013

CD86 expression as a surrogate cellular biomarker for pharmacological inhibition of the histone demethylase lysine-specific demethylase 1.

James T. Lynch; Mark Cockerill; James R. Hitchin; Daniel H. Wiseman; Tim Somervaille

There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays.


MedChemComm | 2013

Development and evaluation of selective, reversible LSD1 inhibitors derived from fragments

James R. Hitchin; Julian Blagg; Rosemary Burke; Samantha Burns; Mark Cockerill; Emma Fairweather; Colin Hutton; Allan M. Jordan; Craig McAndrew; Amin Mirza; Daniel Mould; Graeme J. Thomson; Ian Waddell; Donald J. Ogilvie

Two series of aminothiazoles have been developed as reversible inhibitors of lysine specific demethylase 1 (LSD1) through the expansion of a hit derived from a high concentration biochemical fragment based screen of 2466 compounds. The potency of the initial fragment hit was increased 32-fold through synthesis, with one series of compounds showing clear structure–activity relationships and inhibitory activities in the range of 7 to 187 μM in a biochemical assay. This series also showed selectivity against the related FAD-dependent enzyme mono-amine oxidase A (MAO-A). Although a wide range of irreversible inhibitors of LSD1 have been reported with activities in the low nanomolar range, this work represents one of the first reported examples of a reversible small molecule inhibitor of LSD1 with clear SAR and selectivity against MAO-A, and could provide a platform for the development of more potent reversible inhibitors. Herein, we also report the use of a recently developed cell-based assay for profiling LSD1 inhibitors, and present results on our own compounds as well as a selection of recently described reversible LSD1 inhibitors.


Journal of Medicinal Chemistry | 2013

Toxoflavins and Deazaflavins as the First Reported Selective Small Molecule Inhibitors of Tyrosyl-DNA Phosphodiesterase II

Ali Raoof; Paul Depledge; Niall M. Hamilton; Nicola S. Hamilton; James R. Hitchin; Gemma Hopkins; Allan M. Jordan; Laura Maguire; Alison McGonagle; Daniel Mould; Mathew Rushbrooke; Helen Small; Kate Smith; Graeme Thomson; Fabrice Turlais; Ian Waddell; Bohdan Waszkowycz; Amanda J. Watson; Donald J. Ogilvie

The recently discovered enzyme tyrosyl-DNA phosphodiesterase 2 (TDP2) has been implicated in the topoisomerase-mediated repair of DNA damage. In the clinical setting, it has been hypothesized that TDP2 may mediate drug resistance to topoisomerase II (topo II) inhibition by etoposide. Therefore, selective pharmacological inhibition of TDP2 is proposed as a novel approach to overcome intrinsic or acquired resistance to topo II-targeted drug therapy. Following a high-throughput screening (HTS) campaign, toxoflavins and deazaflavins were identified as the first reported sub-micromolar and selective inhibitors of this enzyme. Toxoflavin derivatives appeared to exhibit a clear structure-activity relationship (SAR) for TDP2 enzymatic inhibition. However, we observed a key redox liability of this series, and this, alongside early in vitro drug metabolism and pharmacokinetics (DMPK) issues, precluded further exploration. The deazaflavins were developed from a singleton HTS hit. This series showed distinct SAR and did not display redox activity; however low cell permeability proved to be a challenge.


Journal of Medicinal Chemistry | 2012

Novel Steroid Inhibitors of Glucose 6-Phosphate Dehydrogenase

Niall M. Hamilton; Martin J Dawson; Emma Fairweather; Nicola S. Hamilton; James R. Hitchin; Dominic I. James; Stuart Jones; Allan M. Jordan; Amanda J. Lyons; Helen Small; Graeme Thomson; Ian Waddell; Donald J. Ogilvie

Novel derivatives of the steroid DHEA 1, a known uncompetitive inhibitor of G6PD, were designed, synthesized, and tested for their ability to inhibit this dehydrogenase enzyme. Several compounds with approximately 10-fold improved potency in an enzyme assay were identified, and this improved activity translated to efficacy in a cellular assay. The SAR for steroid inhibition of G6PD has been substantially developed; the 3β-alcohol can be replaced with 3β-H-bond donors such as sulfamide, sulfonamide, urea, and carbamate. Improved potency was achieved by replacing the androstane nucleus with a pregnane nucleus, provided a ketone at C-20 is present. For pregnan-20-ones incorporation of a 21-hydroxyl group is often beneficial. The novel compounds generally have good physicochemical properties and satisfactory in vitro DMPK parameters. These derivatives may be useful for examining the role of G6PD inhibition in cells and will assist the future design of more potent steroid inhibitors with potential therapeutic utility.


Journal of Cell Science | 2014

Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells

Jane Atkin; Lenka Hálová; Jennifer Ferguson; James R. Hitchin; Agata Lichawska-Cieslar; Allan M. Jordan; Jonathon Pines; Claudia Wellbrock; Janni Petersen

ABSTRACT The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.


Cancer Research | 2015

ERK5 is a critical mediator of inflammation-driven cancer.

Katherine G. Finegan; Diana Perez-Madrigal; James R. Hitchin; Clare C. Davies; Allan M. Jordan; Cathy Tournier

Chronic inflammation is a hallmark of many cancers, yet the pathogenic mechanisms that distinguish cancer-associated inflammation from benign persistent inflammation are still mainly unclear. Here, we report that the protein kinase ERK5 controls the expression of a specific subset of inflammatory mediators in the mouse epidermis, which triggers the recruitment of inflammatory cells needed to support skin carcinogenesis. Accordingly, inactivation of ERK5 in keratinocytes prevents inflammation-driven tumorigenesis in this model. In addition, we found that anti-ERK5 therapy cooperates synergistically with existing antimitotic regimens, enabling efficacy of subtherapeutic doses. Collectively, our findings identified ERK5 as a mediator of cancer-associated inflammation in the setting of epidermal carcinogenesis. Considering that ERK5 is expressed in almost all tumor types, our findings suggest that targeting tumor-associated inflammation via anti-ERK5 therapy may have broad implications for the treatment of human tumors.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and optimisation of orally active TLR7 agonists for the treatment of hepatitis C virus infection.

Thien-Duc Tran; David C. Pryde; Peter Jones; Fiona M. Adam; Neil Benson; Gerwyn Bish; Frederick Calo; Guiseppe Ciaramella; Rachel Dixon; Jonathan Duckworth; David Nathan Abraham Fox; Duncan A. Hay; James R. Hitchin; Nigel Horscroft; Martin Howard; Iain Gardner; Hannah M. Jones; Carl Laxton; Tanya Parkinson; Gemma C. Parsons; Katie J. W. Proctor; Mya C. Smith; Nick N. Smith; Amy Thomas

The synthesis and structure-activity relationships of a series of novel interferon inducers are described. Pharmacokinetic studies and efficacy assessment of a series of 8-oxo-3-deazapurine analogues led to the identification of compound 33, a potent and selective agonist of the TLR7 receptor with an excellent in vivo efficacy profile in a mouse model.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of a highly potent series of TLR7 agonists

Peter Jones; David C. Pryde; Thien-Duc Tran; Fiona M. Adam; Gerwyn Bish; Frederick Calo; Guiseppe Ciaramella; Rachel Dixon; Jonathan Duckworth; David Nathan Abraham Fox; Duncan A. Hay; James R. Hitchin; Nigel Horscroft; Martin Howard; Carl Laxton; Tanya Parkinson; Gemma C. Parsons; Katie J. W. Proctor; Mya C. Smith; Nick N. Smith; Amy Thomas

The discovery of a series of highly potent and novel TLR7 agonist interferon inducers is described. Structure-activity relationships are presented, along with pharmacokinetic studies of a lead molecule from this series of N9-pyridylmethyl-8-oxo-3-deazapurine analogues. A rationale for the very high potency observed is offered. An investigation of the clearance mechanism of this class of compounds in rat was carried out, resulting in aldehyde oxidase mediated oxidation being identified as a key component of the high clearance observed. A possible solution to this problem is discussed.


Journal of Medicinal Chemistry | 2016

Discovery and Optimization of Allosteric Inhibitors of Mutant Isocitrate Dehydrogenase 1 (R132H IDH1) Displaying Activity in Human Acute Myeloid Leukemia Cells

Stuart Jones; Jonathan Ahmet; Kelly Ayton; Matthew Ball; Mark Cockerill; Emma Fairweather; Nicola S. Hamilton; Paul B. Harper; James R. Hitchin; Allan M. Jordan; Colin Levy; Ruth Lopez; Edward A. McKenzie; Martin J. Packer; Darren Plant; Iain Simpson; Peter Simpson; Ian W. Sinclair; Tim Somervaille; Helen Small; Gary J. Spencer; Graeme Thomson; Michael Tonge; Ian Waddell; Jarrod Walsh; Bohdan Waszkowycz; Mark Wigglesworth; Daniel H. Wiseman; Donald J. Ogilvie

A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells in vitro.


Cell Reports | 2018

Enhancer activation by pharmacologic displacement of LSD1 from GFI1 induces differentiation in acute myeloid leukemia

Alba Maiques-Diaz; Gary J. Spencer; James T. Lynch; Filippo Ciceri; Emma L. Williams; Fabio M.R. Amaral; Daniel H. Wiseman; William J Harris; Yaoyong Li; Sudhakar Sahoo; James R. Hitchin; Daniel Mould; Emma Fairweather; Bohdan Waszkowycz; Allan M. Jordan; Duncan L. Smith; Tim Somervaille

Summary Pharmacologic inhibition of LSD1 promotes blast cell differentiation in acute myeloid leukemia (AML) with MLL translocations. The assumption has been that differentiation is induced through blockade of LSD1’s histone demethylase activity. However, we observed that rapid, extensive, drug-induced changes in transcription occurred without genome-wide accumulation of the histone modifications targeted for demethylation by LSD1 at sites of LSD1 binding and that a demethylase-defective mutant rescued LSD1 knockdown AML cells as efficiently as wild-type protein. Rather, LSD1 inhibitors disrupt the interaction of LSD1 and RCOR1 with the SNAG-domain transcription repressor GFI1, which is bound to a discrete set of enhancers located close to transcription factor genes that regulate myeloid differentiation. Physical separation of LSD1/RCOR1 from GFI1 is required for drug-induced differentiation. The consequent inactivation of GFI1 leads to increased enhancer histone acetylation within hours, which directly correlates with the upregulation of nearby subordinate genes.

Collaboration


Dive into the James R. Hitchin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Waddell

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Hutton

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Daniel Mould

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge