James R. Luedtke
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James R. Luedtke.
Siam Journal on Optimization | 2008
James R. Luedtke; Shabbir Ahmed
We study approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample. We show that such a sample approximation problem with a risk level larger than the required risk level will yield a lower bound to the true optimal value with probability approaching one exponentially fast. This leads to an a priori estimate of the sample size required to have high confidence that the sample approximation will yield a lower bound. We then provide conditions under which solving a sample approximation problem with a risk level smaller than the required risk level will yield feasible solutions to the original problem with high probability. Once again, we obtain a priori estimates on the sample size required to obtain high confidence that the sample approximation problem will yield a feasible solution to the original problem. Finally, we present numerical illustrations of how these results can be used to obtain feasible solutions and optimality bounds for optimization problems with probabilistic constraints.
Acta Numerica | 2013
Pietro Belotti; Christian Kirches; Sven Leyffer; Jeff Linderoth; James R. Luedtke; Ashutosh Mahajan
Many optimal decision problems in scientific, engineering, and public sector applications involve both discrete decisions and nonlinear system dynamics that affect the quality of the final design or plan. These decision problems lead to mixed-integer nonlinear programming (MINLP) problems that combine the combinatorial difficulty of optimizing over discrete variable sets with the challenges of handling nonlinear functions. We review models and applications of MINLP, and survey the state of the art in methods for solving this challenging class of problems. Most solution methods for MINLP apply some form of tree search. We distinguish two broad classes of methods: single-tree and multitree methods. We discuss these two classes of methods first in the case where the underlying problem functions are convex. Classical single-tree methods include nonlinear branch-and-bound and branch-and-cut methods, while classical multitree methods include outer approximation and Benders decomposition. The most efficient class of methods for convex MINLP are hybrid methods that combine the strengths of both classes of classical techniques. Non-convex MINLPs pose additional challenges, because they contain non-convex functions in the objective function or the constraints; hence even when the integer variables are relaxed to be continuous, the feasible region is generally non-convex, resulting in many local minima. We discuss a range of approaches for tackling this challenging class of problems, including piecewise linear approximations, generic strategies for obtaining convex relaxations for non-convex functions, spatial branch-and-bound methods, and a small sample of techniques that exploit particular types of non-convex structures to obtain improved convex relaxations. We finish our survey with a brief discussion of three important aspects of MINLP. First, we review heuristic techniques that can obtain good feasible solution in situations where the search-tree has grown too large or we require real-time solutions. Second, we describe an emerging area of mixed-integer optimal control that adds systems of ordinary differential equations to MINLP. Third, we survey the state of the art in software for MINLP.
Mathematical Programming | 2009
James R. Luedtke; Shabbir Ahmed; George L. Nemhauser
Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation corresponding to a single row of the probabilistic constraint. We obtain two strengthened formulations. As a byproduct of this analysis, we obtain new results for the previously studied mixing set, subject to an additional knapsack inequality. We present computational results which indicate that by using our strengthened formulations, instances that are considerably larger than have been considered before can be solved to optimality.
integer programming and combinatorial optimization | 2007
James R. Luedtke; Shabbir Ahmed; George L. Nemhauser
Linear programs with joint probabilistic constraints (PCLP) are known to be highly intractable due to the non-convexity of the feasible region. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We present a mixed integer programming formulation and study the relaxation corresponding to a single row of the probabilistic constraint, yielding two strengthened formulations. As a byproduct of this analysis, we obtain new results for the previously studied mixing set, subject to an additional knapsack inequality. We present computational results that indicate that by using our strengthened formulations, large scale instances can be solved to optimality.
Mathematical Programming | 2014
James R. Luedtke
We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with finite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to find provably good solutions in certain very special cases. Our approach uses both decomposition, to enable processing subproblems corresponding to one possible outcome at a time, and integer programming techniques, to combine the results of these subproblems to yield strong valid inequalities. Computational results on a chance-constrained formulation of a resource planning problem inspired by a call center staffing application indicate the approach works significantly better than both an existing mixed-integer programming formulation and a simple decomposition approach that does not use strong valid inequalities. We also demonstrate how the approach can be used to efficiently solve for a sequence of risk levels, as would be done when solving for the efficient frontier of risk and cost.
Siam Journal on Optimization | 2008
James R. Luedtke
Stochastic dominance constraints allow a decision maker to manage risk in an optimization setting by requiring his or her decision to yield a random outcome which stochastically dominates a reference random outcome. We present new integer and linear programming formulations for optimization under first- and second-order stochastic dominance constraints, respectively. These formulations are more compact than existing formulations, and relaxing integrality in the first-order formulation yields a second-order formulation, demonstrating the tightness of this formulation. We also present a specialized branching strategy and heuristics which can be used with the new first-order formulation. Computational tests illustrate the potential benefits of the new formulations.
Management Science | 2010
Itai Gurvich; James R. Luedtke; Tolga Tezcan
We consider the problem of staffing call centers with multiple customer classes and agent types operating under quality-of-service (QoS) constraints and demand rate uncertainty. We introduce a formulation of the staffing problem that requires that the QoS constraints are met with high probability with respect to the uncertainty in the demand rate. We contrast this chance-constrained formulation with the average-performance constraints that have been used so far in the literature. We then propose a two-step solution for the staffing problem under chance constraints. In the first step, we introduce a random static planning problem (RSPP) and discuss how it can be solved using two different methods. The RSPP provides us with a first-order (or fluid) approximation for the true optimal staffing levels and a staffing frontier. In the second step, we solve a finite number of staffing problems with known arrival rates---the arrival rates on the optimal staffing frontier. Hence, our formulation and solution approach has the important property that it translates the problem with uncertain demand rates to one with known arrival rates. The output of our procedure is a solution that is feasible with respect to the chance constraint and nearly optimal for large call centers.
Mathematical Programming | 2012
James R. Luedtke; Mahdi Namazifar; Jeff Linderoth
We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term independently. We show that for a multilinear function having a single product term, this approach yields the convex and concave envelopes if the bounds on all variables are symmetric around zero. We then review and extend some results on conditions when the concave envelope of a multilinear function can be written as a sum of concave envelopes of its individual terms. Finally, for bilinear functions we prove that the difference between the concave upper bounding and convex lower bounding functions obtained from the McCormick relaxation approach is always within a constant of the difference between the concave and convex envelopes. These results, along with numerical examples we provide, give insight into how to construct strong relaxations of multilinear functions.
Informs Journal on Computing | 2014
James R. Luedtke; Simge Küçükyavuz
We consider a class of packing problems with uncertain data, which we refer to as the chance-constrained binary packing problem. In this problem, a subset of items is selected that maximizes the total profit so that a generic packing constraint is satisfied with high probability. Interesting special cases of our problem include chance-constrained knapsack and set packing problems with random coefficients. We propose a problem formulation in its original space based on the so-called probabilistic covers . We focus our solution approaches on the special case in which the uncertainty is represented by a finite number of scenarios. In this case, the problem can be formulated as an integer program by introducing a binary decision variable to represent feasibility of each scenario. We derive a computationally efficient coefficient strengthening procedure for this formulation, and demonstrate how the scenario variables can be efficiently projected out of the linear programming relaxation. We also study how methods for lifting deterministic cover inequalities can be leveraged to perform approximate lifting of probabilistic cover inequalities. We conduct an extensive computational study to illustrate the potential benefits of our proposed techniques on various problem classes.
Iie Transactions | 2015
Benjamin Armbruster; James R. Luedtke
The use of a stochastic dominance constraint to specify risk preferences in a stochastic program has been recently proposed in the literature. Such a constraint requires the random outcome resulting from one’s decision to stochastically dominate a given random comparator. These ideas have been extended to problems with multiple random outcomes, using the notion of positive linear stochastic dominance. This article proposes a constraint using a different version of multivariate stochastic dominance. This version is natural due to its connection to expected utility maximization theory and relatively tractable. In particular, it is shown that such a constraint can be formulated with linear constraints for the second-order dominance relation and with mixed-integer constraints for the first-order relation. This is in contrast with a constraint on second-order positive linear dominance, for which no efficient algorithms are known. The proposed formulations are tested in the context of two applications: budget allocation in a setting with multiple objectives and finding radiation treatment plans in the presence of organ motion.