Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James R. Reed is active.

Publication


Featured researches published by James R. Reed.


Drug Metabolism and Disposition | 2007

Metabolism And Excretion of the Dipeptidyl Peptidase 4 Inhibitor [14C]Sitagliptin in Humans

Stella H. Vincent; James R. Reed; Arthur J. Bergman; Charles S. Elmore; Bing Zhu; Shiyao Xu; David L. Ebel; Patrick Larson; Wei Zeng; Li Chen; Stacy Dilzer; Kenneth C. Lasseter; Keith Gottesdiener; John A. Wagner; Gary A. Herman

The metabolism and excretion of [14C]sitagliptin, an orally active, potent and selective dipeptidyl peptidase 4 inhibitor, were investigated in humans after a single oral dose of 83 mg/193 μCi. Urine, feces, and plasma were collected at regular intervals for up to 7 days. The primary route of excretion of radioactivity was via the kidneys, with a mean value of 87% of the administered dose recovered in urine. Mean fecal excretion was 13% of the administered dose. Parent drug was the major radioactive component in plasma, urine, and feces, with only 16% of the dose excreted as metabolites (13% in urine and 3% in feces), indicating that sitagliptin was eliminated primarily by renal excretion. Approximately 74% of plasma AUC of total radioactivity was accounted for by parent drug. Six metabolites were detected at trace levels, each representing <1 to 7% of the radioactivity in plasma. These metabolites were the N-sulfate and N-carbamoyl glucuronic acid conjugates of parent drug, a mixture of hydroxylated derivatives, an ether glucuronide of a hydroxylated metabolite, and two metabolites formed by oxidative desaturation of the piperazine ring followed by cyclization. These metabolites were detected also in urine, at low levels. Metabolite profiles in feces were similar to those in urine and plasma, except that the glucuronides were not detected in feces. CYP3A4 was the major cytochrome P450 isozyme responsible for the limited oxidative metabolism of sitagliptin, with some minor contribution from CYP2C8.


Pharmacology & Therapeutics | 2012

Formation of P450 · P450 complexes and their effect on P450 function

James R. Reed; Wayne L. Backes

Cytochromes P450 (P450) are membrane-bound enzymes that catalyze the monooxygenation of a diverse array of xenobiotic and endogenous compounds. The P450s responsible for foreign compound metabolism generally are localized in the endoplasmic reticulum of the liver, lung and small intestine. P450 enzymes do not act alone but require an interaction with other electron transfer proteins such as NADPH-cytochrome P450 reductase (CPR) and cytochrome b(5). Because P450s are localized in the endoplasmic reticulum with these and other ER-resident proteins, there is a potential for protein-protein interactions to influence P450 function. There has been increasing evidence that P450 enzymes form complexes in the ER, with compelling support that formation of P450 · P450 complexes can significantly influence their function. Our goal is to review the research supporting the formation of P450 · P450 complexes, their specificity, and how drug metabolism may be affected. This review describes the potential mechanisms by which P450s may interact, and provides evidence to support each of the possible mechanisms. Additionally, evidence for the formation of both heteromeric and homomeric P450 complexes are reviewed. Finally, direct physical evidence for P450 complex formation in solution and in membranes is summarized, and questions directing the future research of functional P450 interactions are discussed with respect to their potential impact on drug metabolism.


Drug Metabolism and Disposition | 2007

Disposition of the dipeptidyl peptidase 4 inhibitor sitagliptin in rats and dogs.

Maria Beconi; James R. Reed; Yohannes Teffera; Yuan Qing Xia; Christopher J. Kochansky; David Q. Liu; Shiyao Xu; Charles S. Elmore; Suzanne L. Ciccotto; Donald F. Hora; Ralph A. Stearns; Stella H. Vincent

The pharmacokinetics, metabolism, and excretion of sitagliptin [MK-0431; (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine], a potent dipeptidyl peptidase 4 inhibitor, were evaluated in male Sprague-Dawley rats and beagle dogs. The plasma clearance and volume of distribution of sitagliptin were higher in rats (40–48 ml/min/kg, 7–9 l/kg) than in dogs (∼9 ml/min/kg, ∼3 l/kg), and its half-life was shorter in rats, ∼2 h compared with ∼4 h in dogs. Sitagliptin was absorbed rapidly after oral administration of a solution of the phosphate salt. The absolute oral bioavailability was high, and the pharmacokinetics were fairly dose-proportional. After administration of [14C]sitagliptin, parent drug was the major radioactive component in rat and dog plasma, urine, bile, and feces. Sitagliptin was eliminated primarily by renal excretion of parent drug; biliary excretion was an important pathway in rats, whereas metabolism was minimal in both species in vitro and in vivo. Approximately 10 to 16% of the radiolabeled dose was recovered in the rat and dog excreta as phase I and II metabolites, which were formed by N-sulfation, N-carbamoyl glucuronidation, hydroxylation of the triazolopiperazine ring, and oxidative desaturation of the piperazine ring followed by cyclization via the primary amine. The renal clearance of unbound drug in rats, 32 to 39 ml/min/kg, far exceeded the glomerular filtration rate, indicative of active renal elimination of parent drug.


Journal of Biological Chemistry | 2010

Functional Interactions between Cytochromes P450 1A2 and 2B4 Require Both Enzymes to Reside in the Same Phospholipid Vesicle EVIDENCE FOR PHYSICAL COMPLEX FORMATION

James R. Reed; Marilyn Eyer; Wayne L. Backes

Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450·P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR·CYP1A2, 2) CPR·CYP2B4, 3) a mixture of CPR·CYP1A2 vesicles with CPR·CYP2B4 vesicles, and 4) CPR·CYP1A2·CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane.


Molecular Pharmacology | 2011

Organization of NADPH-cytochrome P450 reductase and CYP1A2 in the endoplasmic reticulum--microdomain localization affects monooxygenase function.

Lauren M. Brignac-Huber; James R. Reed; Wayne L. Backes

Cytochrome P450 is part of an electron transport chain found in the endoplasmic reticulum (ER), with its catalytic function requiring interactions with NADPH-cytochrome P450 reductase (CPR). The goals of this study were to examine how the P450 system proteins are organized in the membrane and to determine whether they are distributed in detergent-resistant lipid microdomains (DRM). Isolated liver microsomes from untreated rabbits were treated with 1% Brij 98, and DRMs were isolated via sucrose gradient centrifugation. Lipid analysis showed that DRM fractions were enriched in cholesterol and sphingomyelin, similar to that found with plasma membrane DRMs. Approximately 73% of CYP1A2 and 68% of CPR resided in DRM fractions, compared with only 33% of total ER proteins. These DRMs were found to be cholesterol-dependent: CPR and CYP1A2 migrated to the more dense regions of the sucrose gradient after cholesterol depletion. CYP1A2 function was studied in three purified lipid vesicles consisting of 1) phosphatidylcholine (V-PC), 2) lipids with a composition similar to ER lipids (V-ER), and 3) lipids with a composition similar to the DRM fractions (V-DRM). Each system showed similar substrate binding characteristics. However, when the association between CPR and CYP1A2 was measured, V-ER and V-DRM liposomes produced lower apparent Km values compared with V-PC without any significant change in Vmax. These findings suggest that CYP1A2 and CPR reside in ER-DRMs and that the unique lipid components of these domains enhance CYP1A2 substrate metabolism through greater efficiency in CPR-CYP1A2 binding.


Drug Metabolism Letters | 2011

Inhibition of Cytochrome P450 1A2-Mediated Metabolism and Production of Reactive Oxygen Species by Heme Oxygenase-1 in Rat Liver Microsomes

James R. Reed; George F. Cawley; Wayne L. Backes

Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or β-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide).


Drug Metabolism and Disposition | 2006

AN EVALUATION OF METHODS FOR THE RECONSTITUTION OF CYTOCHROMES P450 AND NADPH P450 REDUCTASE INTO LIPID VESICLES

James R. Reed; Rusty W. Kelley; Wayne L. Backes

Two methods (cholate dialysis and cholate gel filtration) used to incorporate cytochromes P450 (P450s) and reductase into unilamellar phospholipid vesicles were compared with a standard reconstituted system (SRS) in which the proteins were reconstituted with preformed liposomes. Both cholate dialysis and gel filtration methods were comparable in their ability to physically incorporate reductase and either CYP2B4 or CYP1A2 into phospholipid, as determined by the elution of enzymes in the void volume using size exclusion chromatography (mol. wt. cutoff –5,000,000). Incorporation of these proteins was more efficient with both cholate methods than when reductase and P450 were mixed with preformed vesicles (SRS). Using either cholate method, more than 85% of the P450 was physically incorporated into the phospholipid vesicles, whereas less than 40% of the P450 was physically incorporated into the phospholipid vesicles using the SRS. Catalytic activities of the vesicular preparations of reductase and either CYP1A2 or CYP2B4 also were significantly higher than those resulting from the SRS using dilaurylphosphatidylcholine. Although both cholate dialysis and gel filtration methods improved protein incorporation when compared with preincubation of proteins with preformed liposomes, reductase incorporation was dependent on the relative amount of reductase used. Reductase incorporation was complete at a 0.2:1 reductase/P450 ratio; however, the efficiency of incorporation decreased to less than 50% at equimolar reductase/P450. Interestingly, reductase incorporation was higher in the presence of CYP1A2 than with CYP2B4. Both cholate methods resulted in the loss of a proportion of spectrally detectable carbon monoxyferrous P450, resulting from incubation of the proteins with detergent.


Biochemical Journal | 2012

Effect of Homomeric P450•P450 Complexes on P450 Function

James R. Reed; J. Patrick Connick; Dongmei Cheng; George F. Cawley; Wayne L. Backes

Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.


Journal of Inorganic Biochemistry | 2003

Comparison of substrate metabolism by cytochromes P450 2B1, 2B4, and 2B6: relationship of heme spin state, catalysis, and the effects of cytochrome b5

James R. Reed; Paul F. Hollenberg

The metabolism of selected substrates by cytochromes P450 (P450) 2B1, 2B4, and 2B6 was compared, and the effects of cytochrome b(5) (b(5)) on these reactions were assessed. There did not appear to be any trends regarding the effects of b(5) when the metabolism of a given substrate by the different P450 enzymes was compared. The changes in spin states of the P450 enzymes as a result of interactions with substrates and cytochrome b(5) were also determined. Only P450 2B4 demonstrated a relationship between spin state, reaction coupling and b(5) effects. The rates of benzphetamine and 7-ethoxy-4-trifluoromethylcoumarin metabolism by the three enzymes could be correlated with the proportions of high spin heme. Similarly, the proportion of reaction coupling during the metabolism of selected substrates was approximately equal to the proportion of high spin P450. The data are interpreted to indicate that a P450 conformational equilibrium coordinately regulates catalysis and spin state changes.


Drug Metabolism and Disposition | 2009

Measurement of membrane-bound human heme oxygenase-1 activity using a chemically defined assay system

Warren J. Huber; Christopher C. Marohnic; Michelle Peters; Jawed Alam; James R. Reed; Bettie Sue Siler Masters; Wayne L. Backes

Heme oxygenase (HO) catalyzes heme degradation in a reaction requiring NADPH-cytochrome P450 reductase (CPR). Although most studies with HO used a soluble 30-kDa form, lacking the C-terminal membrane-binding region, recent reports show that the catalytic behavior of this enzyme is very different if this domain is retained; the overall activity was elevated 5-fold, and the Km for CPR decreased approximately 50-fold. The goal of these studies was to accurately measure HO activity using a coupled assay containing purified biliverdin reductase (BVR). This allows measurement of bilirubin formation after incorporation of full-length CPR and heme oxygenase-1 (HO-1) into a membrane environment. When rat liver cytosol was used as the source of partially purified BVR, the reaction remained linear for 2 to 3 min; however, the reaction was only linear for 10 to 30 s when an equivalent amount of purified, human BVR (hBVR) was used. This lack of linearity was not observed with soluble HO-1. Optimal formation of bilirubin was achieved with concentrations of bovine serum albumin (0.25 mg/ml) and hBVR (0.025–0.05 μM), but neither supplement increased the time that the reaction remained linear. Various concentrations of superoxide dismutase had no effect on the reaction; however, when catalase was included, the reactions were linear for at least 4 to 5 min, even at high CPR levels. These results not only show that HO-1-generated hydrogen peroxide leads to a decrease in HO-1 activity but also provide for a chemically defined system to be used to examine the function of full-length HO-1 in a membrane environment.

Collaboration


Dive into the James R. Reed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

George F. Cawley

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Ji Won Park

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Dongmei Cheng

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Marilyn Eyer

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bettie Sue Siler Masters

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Christopher C. Marohnic

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge