James S. Bean
Eli Lilly and Company
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James S. Bean.
Life Sciences | 1991
Raymond F. Kauffman; James S. Bean; Karen M. Zimmerman; Raymond F. Brown; Mitchell I. Steinberg
Angiotensin-converting enzyme inhibitors have been shown to inhibit intimal thickening following balloon catheterization of rat carotid arteries. To assess the role of the renin-angiotensin pathway and the angiotensin type-I (AT1) receptor in this effect, the nonpeptide Ang II antagonist losartan (DuP 753) or vehicle was infused continuously i.v. in rats from two days before to two weeks after balloon injury to the left common carotid artery; drug effects upon intimal thickening were examined histologically. Losartan produced a dose-dependent reduction in cross-sectional area of intimal lesions determined two weeks post balloon injury. At 5 mg/kg/day a nonsignificant 23% reduction of intimal area was observed. At the higher dose of 15 mg/kg/day, losartan produced a 48% reduction in intimal area (P less than 0.05) compared to the vehicle-infused group. The cellular density of the neointima was not affected by losartan, indicating a probable effect of the drug upon migration and/or proliferation of smooth muscle cells. In separate groups of non-ballooned rats, losartan infusions of 5 and 15 mg/kg/day produced significant rightward shifts (averaging 6.4- and 55-fold, respectively) in curves relating increases in blood pressure to intravenous Ang II in pithed rats determined between 2 and 16 days following initiation of losartan infusion. Mean arterial blood pressure (determined under alpha-chloralose anesthesia) was reduced following continuous losartan infusion for 6 days from 128 +/- 8 mm Hg (vehicle) to 105 +/- 8 mm Hg at 5 mg/kg/day (P less than 0.05), and 106 +/- 4 mm Hg at 15 mg/kg/day (P less than 0.05). Thus, losartan attenuated the vascular response to balloon catheter injury, and this effect was associated with functional block of vascular AT1 receptors. The results support a role for Ang II, acting via AT1 receptors, in myointimal thickening subsequent to balloon injury of rat carotid arteries.
Journal of Cardiovascular Pharmacology | 2000
Raymond F. Kauffman; James S. Bean; Kennan Joseph Fahey; George Joseph Cullinan; David A. Cox; William R. Bensch
The effects of raloxifene and 17alpha-ethinyl estradiol (EE2) on intimal thickening in response to balloon injury were tested in male and ovariectomized female rats. In male rats, oral raloxifene and EE2, administered either by gavage or in the diet, inhibited arterial intimal thickening in response to balloon injury to a maximum of approximately 60 and 50%, respectively. The effect of oral raloxifene to decrease cholesterol was observed at doses (> or = 3 mg/kg/day) higher than those required to inhibit intimal thickening (> or = 0.03 mg/kg/day). Coadministration of the estrogen receptor antagonist, ICI 182,780 (5 mg/kg/day, s.c.), blocked the inhibition of balloon injury by raloxifene and EE2. Direct adventitial delivery of raloxifene (0.03 mg/kg/day) and EE2 (0.001 mg/kg/day) to the vascular wall inhibited intimal thickening by 63 and 53%, respectively. In ovariectomized female rats, oral raloxifene (0.01-3.0 mg/kg/day) and EE2 (0.08 mg/kg/day) inhibited intimal thickening to a maximum of 32 and 60%, respectively. Together, these data suggest that raloxifene and EE2, inhibit balloon arterial injury in the rat through direct effects on the vascular wall that involve the estrogen receptor and are at least partially independent of serum cholesterol.
PLOS ONE | 2014
Melissa A. Bellinger; James S. Bean; Melissa A. Rader; Kathleen M. Heinz-Taheny; Jairo Nunes; Joseph Haas; Laura F. Michael; Mark Rekhter
Background Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice. Methodology/Principal Findings Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis. Conclusions/Significance Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.
Cardiovascular Diabetology | 2011
Xiao Lu; James S. Bean; Ghassan S. Kassab; Mark Rekhter
ObjectiveInsulin resistance, diabetes, and hypertension are considered elements of metabolic syndrome which is associated with vascular dysfunction. We investigated whether inhibition of protein kinase C (PKC) would affect vascular function in diabetic hypertensive (DH) rats.MethodsA combination of type 2 diabetes and arterial hypertension was produced in male Sprague Dawley rats by intrauterine protein deprivation (IUPD) followed by high salt diet. At the age of 32 weeks, DH rats were treated for 2 weeks with the angiotensin-converting enzyme inhibitor captopril (Capto, 30 mg/kg), PKC inhibitor ruboxistaurin (RBX, 50 mg/kg) or vehicle (n = 8 per group) and blood pressure was monitored using telemetry. At the end of experiments, femoral arteries were dissected, and vascular reactivity was evaluated with isovolumic myography.ResultsThe IUPD followed by high salt diet resulted in significant elevation of plasma glucose, plasma insulin, and blood pressure. Endothelium-dependent vascular relaxation in response to acetylcholine was blunted while vascular contraction in response to phenylephrine was enhanced in the DH rats. Neither Capto nor RBX restored endothelium-dependent vascular relaxation while both suppressed vascular contraction. Ex-vivo incubation of femoral arteries from control rats with insulin induced dose-response vasorelaxation while insulin failed to induce vasorelaxation in the DH rat arteries. In the control arteries treated with endothelial nitric oxide synthase inhibitor L-NAME, insulin induced vasoconstriction that was exacerbated in DH rats. Capto and RBX partially inhibited insulin-stimulated vascular contraction.ConclusionThese findings suggest that PKC inhibition ameliorates functional endothelial insulin resistance and smooth muscle cell hypersensitivity to insulin, but does not restore acetylcholine-activated endothelium-dependent vasodilation in DH rats.
PLOS ONE | 2012
Richard G Conway; Eyassu Chernet; David C. De Rosa; Robert J. Benschop; Anne B. Need; Emily C. Collins; James S. Bean; J. Michael Kalbfleisch; Mark Rekhter
Background 18F-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging of atherosclerosis in the clinic is based on preferential accumulation of radioactive glucose analog in atherosclerotic plaques. FDG-PET is challenging in mouse models due to limited resolution and high cost. We aimed to quantify accumulation of nonradioactive glucose metabolite, FDG-6-phosphate, in the mouse atherosclerotic plaques as a simple alternative to PET imaging. Methodology/Principal Findings Nonradioactive FDG was injected 30 minutes before euthanasia. Arteries were dissected, and lipids were extracted. The arteries were re-extracted with 50% acetonitrile-50% methanol-0.1% formic acid. A daughter ion of FDG-6-phosphate was quantified using liquid chromatography and mass spectrometry (LC/MS/MS). Thus, both traditional (cholesterol) and novel (FDG-6-phosphate) markers were assayed in the same tissue. FDG-6-phosphate was accumulated in atherosclerotic lesions associated with carotid ligation of the Western diet fed ApoE knockout mice (5.9 times increase compare to unligated carotids, p<0.001). Treatment with the liver X receptor agonist T0901317 significantly (2.1 times, p<0.01) reduced FDG-6-phosphate accumulation 2 weeks after surgery. Anti-atherosclerotic effects were independently confirmed by reduction in lesion size, macrophage number, cholesterol ester accumulation, and macrophage proteolytic activity. Conclusions/Significance Mass spectrometry of FDG-6-phosphate in experimental atherosclerosis is consistent with plaque inflammation and provides potential translational link to the clinical studies utilizing FDG-PET imaging.
Lipids | 2008
Jian Wang; Lan Yu; He Wang; Yunling Gao; James Schrementi; Regina K. Porter; David A Yurek; Ming-Shang Kuo; Chen-Shian Suen; Guoqing Cao; James S. Bean; Raymond F. Kauffman; Yue-Wei Qian
Stearoyl-CoA desaturase (SCD) catalyzes the formation of monounsaturated fatty acids from saturated fatty acids. It plays a key role in lipid metabolism and energy expenditure in mammals. In mice, four SCD isoforms (SCD1–4) have been identified. Here we report the identification of cDNA sequences corresponding to SCD1, SCD2 and SCD3 of golden hamster. The deduced amino acid sequences of these hamster SCD (hmSCD) isoforms display a high degree of homologies to their mouse counterparts (mouse SCD). Polyclonal antibodies specific to rodent SCDs detected proteins of predicted size in the human embryonic kidney 293 cells transfected with hmSCD cDNAs. Microsome fractions prepared from these cells also displayed increased SCD activity versus cells transfected with vector alone. Real-time reverse transcription-polymerase chain reaction analysis revealed the highest expression of hmSCD1 in liver and adipose tissue, while the highest hmSCD2 expression was detected in the brain. Very low levels of hmSCD3 mRNA can be detected in the tissues tested. This report is the first description of three SCD isoforms in the hamster and will provide useful tools in the further study of fatty acids metabolism in this species.
Journal of Medicinal Chemistry | 2015
John G. Luz; Matthew W. Carson; Bradley Condon; David K. Clawson; Anna Pustilnik; Daniel T. Kohlman; Robert J. Barr; James S. Bean; M. Joelle Dill; Dana Sindelar; Milan Maletic; Michael J. Coghlan
To further elucidate the structural activity correlation of glucocorticoid receptor (GR) antagonism, the crystal structure of the GR ligand-binding domain (GR LBD) complex with a nonsteroidal antagonist, compound 8, was determined. This novel indole sulfonamide shows in vitro activity comparable to known GR antagonists such as mifepristone, and notably, this molecule lowers LDL (-74%) and raises HDL (+73%) in a hamster model of dyslipidemia. This is the first reported crystal structure of the GR LBD bound to a nonsteroidal antagonist, and this article provides additional elements for the design and pharmacology of clinically relevant nonsteroidal GR antagonists that may have greater selectivity and fewer side effects than their steroidal counterparts.
Diabetes | 2002
Garret J. Etgen; Brian A. Oldham; William T. Johnson; Carol L. Broderick; Chahrzad R. Montrose; Joseph T. Brozinick; Elizabeth A. Misener; James S. Bean; William R. Bensch; Dawn A. Brooks; Anthony J. Shuker; Christopher John Rito; James R. McCarthy; Robert Ardecky; John S. Tyhonas; Sharon L. Dana; James M. Bilakovics; James R. Paterniti; Kathleen M. Ogilvie; Sha Liu; Raymond F. Kauffman
Journal of Pharmacology and Experimental Therapeutics | 1997
Raymond F. Kauffman; William R. Bensch; Roger E. Roudebush; Harlan W. Cole; James S. Bean; D. Lynn Phillips; Amy Monroe; George Joseph Cullinan; Andrew Lawrence Glasebrook; Henry Uhlman Bryant
Journal of Medicinal Chemistry | 2003
Yanping Xu; Daniel Ray Mayhugh; Ashraf Saeed; Xiaodong Wang; Richard Craig Thompson; Samuel J. Dominianni; Raymond F. Kauffman; Jaipal Singh; James S. Bean; William R. Bensch; Robert J. Barr; John Osborne; Chahrzad Montrose-Rafizadeh; Richard W. Zink; Nathan Yumibe; Naijia Huang; Debra Luffer-Atlas; Deepa Rungta; Dale E. Maise; Nathan Bryan Mantlo