Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James S. Lee is active.

Publication


Featured researches published by James S. Lee.


Biology of Reproduction | 2009

Developmental Programming: Contribution of Prenatal Androgen and Estrogen to Estradiol Feedback Systems and Periovulatory Hormonal Dynamics in Sheep

Almudena Veiga-Lopez; Olga Astapova; Esther F. Aizenberg; James S. Lee; Vasantha Padmanabhan

Abstract Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.


Biology of Reproduction | 2005

Fetal Programming: Testosterone Exposure of the Female Sheep During Midgestation Disrupts the Dynamics of Its Adult Gonadotropin Secretion During the Periovulatory Period

Mozhgan Savabieasfahani; James S. Lee; Carol Herkimer; Tejinder Pal Sharma; Douglas L. Foster; Vasantha Padmanabhan

Abstract Prenatal exposure of the female sheep to excess testosterone (T) leads to hypergonadotropism, multifollicular ovaries, and progressive loss of reproductive cycles. We have determined that prenatal T treatment delays the latency of the estradiol (E2)-induced LH surge. To extend this finding into a natural physiological context, the present study was conducted to determine if the malprogrammed surge mechanism alters the reproductive cycle. Specifically, we wished to determine if prenatal T treatment 1) delays the onset of the preovulatory gonadotropin surge during the natural follicular phase rise in E2, 2) alters pulsatile LH secretion and the dynamics of the secondary FSH surge, and 3) compromises the ensuing luteal function. Females prenatally T-treated from Day 60 to Day 90 of gestation (147 days is term) and control females were studied when they were ∼2.5 yr of age. Reproductive cycles of control and prenatally T-treated females were synchronized with PGF2α, and peripheral blood samples were collected every 2 h for 120 h to characterize cyclic changes in E2, LH, and FSH and then daily for 14 days to monitor changes in luteal progesterone. To assess LH pulse patterns, blood samples were also collected frequently (each 5 min for 6 h) during the follicular and luteal phases of the cycle. The results revealed that, in prenatally T-treated females, 1) the preovulatory increase in E2 was normal; 2) the latencies between the preovulatory increase in E2 and the peaks of the primary LH and FSH surges were longer, but the magnitudes similar; 3) follicular-phase LH pulse frequency was increased; 4) the interval between the primary and secondary FSH surges was reduced but there was a tendency for an increase in duration of the secondary FSH surge; but 5) luteal progesterone patterns were in general unaltered. Thus, exposure of the female to excess T before birth produces perturbances and maltiming in periovulatory gonadotropin secretory dynamics, but these do not produce apparent defects in cycle regularity or luteal function. To reveal the pathologies that lead to the eventual subfertility arising from excess T exposure during midgestation, studies at older ages must be conducted to assess if there is progressive disruption of neuroendocrine and ovarian function.


Endocrinology | 2012

Developmental programming: prenatal and postnatal contribution of androgens and insulin in the reprogramming of estradiol positive feedback disruptions in prenatal testosterone-treated sheep.

Bachir Abi Salloum; Carol Herkimer; James S. Lee; Almudena Veiga-Lopez; Vasantha Padmanabhan

Prenatal testosterone (T) excess compromises the estradiol (E(2)) positive feedback. This study tested the hypothesis that antagonizing androgen action or improving insulin sensitivity prenatally would prevent positive feedback disruptions from developing, whereas postnatal intervention with androgen antagonist or insulin sensitizer would ameliorate the severity of disruptions in prenatal T-treated females. The E(2) positive feedback response was tested at 16 wk of age in the following groups of animals: 1) control, 2) prenatal T, 3) prenatal T plus the androgen antagonist, flutamide, 4) prenatal T plus insulin sensitizer, rosiglitazone, 5) prenatal T and postnatal androgen antagonist, and 6) prenatal T and postnatal insulin sensitizer (n = 7-21 animals/group). Prenatal T treatment involved the administration of T propionate (100 mg, im) twice weekly from d 30 to 90 of gestation. Prenatal interventions involved daily sc administration of androgen antagonist (15 mg/kg) or oral administration of insulin sensitizer (8 mg) for the same duration. Postnatal treatments began at 8 wk of age and involved daily oral administration of androgen antagonist (15 mg/kg) or insulin sensitizer (0.11 mg/kg). None of the prenatal/postnatal interventions increased number of animals responding or prevented the time delay in LH surge response to the E(2) positive feedback challenge. In contrast, the postnatal treatment with androgen antagonist or insulin sensitizer increased total LH released in response to E(2) positive feedback challenge, compared with the T animals. Overall, these interventional studies indicate that timing and magnitude of the LH surge are programmed by different neuroendocrine mechanisms with postnatal androgens and insulin determining the size and prenatal estrogen likely the timing of the LH surge.


Endocrinology | 2010

Developmental Programming: Insulin Sensitizer Treatment Improves Reproductive Function in Prenatal Testosterone-Treated Female Sheep

Almudena Veiga-Lopez; James S. Lee; Vasantha Padmanabhan

Prenatal testosterone (T) excess causes reproductive and metabolic disruptions including insulin resistance, attributes of women with polycystic ovary syndrome. This study tested the hypothesis that insulin resistance contributes toward severity of reproductive disruptions in prenatally T-treated females. Pregnant sheep were injected im with 100 mg of T-propionate semiweekly from d 30-90 of gestation. Immediately after the first breeding season, a subset of controls and prenatal T-treated (TR) sheep were administered an insulin sensitizer (rosiglitazone; 8 mg/d) orally for 8 months. Untreated control and prenatal T-treated females (T group) were studied in parallel. Biochemical analyses revealed rosiglitazone to be safe for use in sheep. Glucose tolerance tests performed before and after the insulin sensitizer treatment found that insulin sensitizer decreased cumulative insulin, cumulative insulin/glucose ratio, and insulin area under the curve by about 50% and increased the insulin sensitivity index by about 70% in the TR compared with the T group. Twenty percent of TR females showed a reduced number of cycles in the second relative to first breeding season as opposed to 80% of T group females showing such deterioration. Insulin sensitizer treatment also decreased the number of aberrant cycles (>/=18 d) during the second breeding season in the TR group relative to the first as opposed to the T group females showing an increase in the second breeding season relative to the first. These findings provide evidence that insulin sensitizer treatment prevents further deterioration of the reproductive axis in prenatal T-treated sheep, a finding of translational relevance to women with polycystic ovary syndrome.


Biology of Reproduction | 2012

Neuroendocrine Control of FSH Secretion: IV. Hypothalamic Control of Pituitary FSH-Regulatory Proteins and Their Relationship to Changes in FSH Synthesis and Secretion

Tejinder Pal Sharma; Terry M. Nett; Fred J. Karsch; David J. Phillips; James S. Lee; Carol Herkimer; Vasantha Padmanabhan

ABSTRACT The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.


Biology of Reproduction | 2002

Neuroendocrine control of follicle-stimulating hormone (FSH) secretion: II. Is follistatin-induced suppression of FSH secretion mediated via changes in activin availability and does it involve changes in gonadotropin-releasing hormone secretion?

Vasantha Padmanabhan; Deborah F. Battaglia; Morton B. Brown; Fred J. Karsch; James S. Lee; Wenqin Pan; David J. Phillips; Judith Van Cleeff

Abstract The objective of the present study was to determine to what extent activin participates in setting the level of FSH secretion and if this regulation includes mediation via changes in GnRH secretion. We administered follistatin, the high-affinity binding protein for activin, to five ovariectomized sheep; we reasoned that the resultant binding of follistatin to activin should lower activin bioavailability and FSH secretion. Hypophyseal portal and peripheral blood samples were collected simultaneously at 10-min intervals for 18 h to measure GnRH, LH, FSH, and both activin-free and total follistatin. Six hours into collection, each ewe received 150 μg/kg i.v. of recombinant human follistatin-288. A week later, the same ewes were subjected to a second series of blood collections of similar length (time control). The FSH levels in pituitary portal blood were approximately 8-fold higher than those in the peripheral circulation. The FSH secretory patterns changed minimally during the time-control period. In contrast, follistatin had profound suppressive effects on FSH secretion. Maximal FSH suppression after FS-288 administration occurred at 5–6 h in the pituitary portal (65% suppression) and 9–10 h in the peripheral (48% suppression) circulation. Follistatin had no effect on GnRH or LH secretory patterns. Disappearance of total follistatin (i.e., free follistatin plus activin-bound follistatin) from the circulation was slower (P < 0.05) than that of free follistatin alone, suggesting that some of the follistatin was complexed with circulating activin, thus reducing the bioavailability of activin. The slower clearance of total follistatin and the lack of follistatin effects on GnRH secretion suggest that changes in activin bioavailability dictate the level of pituitary FSH secretion and that this is a pituitary-specific effect.


Toxicology and Applied Pharmacology | 2013

Developmental programming: Impact of prenatal exposure to bisphenol-A and methoxychlor on steroid feedbacks in sheep

Bachir Abi Salloum; Teresa L. Steckler; Carol Herkimer; James S. Lee; Vasantha Padmanabhan

Bisphenol-A (BPA), a polymer used in plastics manufacturing, and methoxychlor (MXC), a pesticide, are endocrine disrupting compounds with estrogenic and anti-androgenic properties. Prenatal BPA or MXC treatment induces reproductive defects in sheep with BPA causing prepubertal luteinizing hormone (LH) hypersecretion and dampening of periovulatory LH surges and MXC lengthening follicular phase and delaying the LH surge. In this study, we addressed the underlying neuroendocrine defects by testing the following hypotheses: 1) prenatal BPA, but not MXC reduces sensitivity to estradiol and progesterone negative feedback, 2) prenatal BPA, but not MXC increases pituitary responsiveness to gonadotropin releasing hormone (GnRH), and 3) prenatal BPA dampens LH surge response to estradiol positive feedback challenge while prenatal MXC delays the timing of the LH surge. Pregnant sheep were treated with either 1) 5mg/kg/day BPA (produces approximately twice the level found in human circulation, n=8), 2) 5mg/kg/day MXC (the lowest observed effect level stated in the EPA National Toxicology Programs Report; n=6), or 3) vehicle (cotton seed oil: C: n=6) from days 30 to 90 of gestation. Female offspring of these ewes were ovariectomized at 21months of age and tested for progesterone negative, estradiol negative, estradiol positive feedback sensitivities and pituitary responsiveness to GnRH. Results revealed that sensitivity to all 3 feedbacks as well as pituitary responsiveness to GnRH were not altered by either of the prenatal treatments. These findings suggest that the postpubertal reproductive defects seen in these animals may have stemmed from ovarian defects and the steroidal signals emanating from them.


Biology of Reproduction | 2008

Developmental Programming: Exogenous Gonadotropin Treatment Rescues Ovulatory Function But Does Not Completely Normalize Ovarian Function in Sheep Treated Prenatally with Testosterone

Teresa L. Steckler; James S. Lee; Wen Ye; E. Keith Inskeep; Vasantha Padmanabhan

Abstract Prenatal testosterone treatment leads to LH excess as well as ovarian follicular and ovulatory defects in the adult. These disruptions may stem from LH excess, abnormal FSH input, compromised ovarian sensitivity to gonadotropins, or intrinsic ovarian defects. To determine if exogenous gonadotropins rescue ovarian and ovulatory function of testosterone-treated sheep, the release of endogenous LH and biopotent FSH in control and prenatal testosterone-treated sheep was blocked with a GnRH antagonist during the first two breeding seasons and with LH/FSH coadministered in a manner approximating natural follicular phase. An acidic mix of FSH was administered the first 36 h at 2-h intervals and a less acidic mix for the next 12 h at 1-h intervals (different FSH preparations were used each year), and ovulation was induced with hCG. Circulating FSH and estradiol responses to gonadotropins measured in 2-h samples differed between treatment groups in Year 1 but not in Year 2. Ovarian follicular distribution and number of corpora lutea (in ewes that ovulated) tracked by ultrasonography and luteal progesterone responses were similar between control and prenatal testosterone-treated females but differed between years. Furthermore, hCG administration induced large cystic and luteinized follicles in both groups of females in Year 2, although the growth rate differed between control and prenatal testosterone-treated females. Our findings provide evidence that 1) ovulatory response in prenatal testosterone-treated females can be rescued with exogenous gonadotropins, 2) resultant follicular response is dependent on the nature of gonadotropic input, and 3) an abnormal follicular milieu may underlie differences in developmental trajectory of cystic follicles in prenatal testosterone-treated females.


Biochemical Pharmacology | 1994

RELATIONSHIP BETWEEN CYTOTOXICITY AND CONVERSION OF THIOSANGIVAMYCIN ANALOGS TO TOYOCAMYCIN ANALOGS IN CELL CULTURE MEDIUM

Thomas E. Renau; James S. Lee; Hanna Kim; Christopher G. Young; Linda L. Wotring; Leroy B. Townsend; John C. Drach

Non-nucleoside analogs of the pyrrolopyrimidine nucleosides toyocamycin, sangivamycin and thiosangivamycin have been synthesized and their cytotoxicity in mammalian cells determined. While studying the effects of 5-thioamide-substituted analogs on cell growth, we observed an interesting phenomenon in which cells recovered spontaneously from growth inhibition during extended incubations. HPLC studies demonstrated that the 5-thioamide moiety of several structurally dissimilar 7-substituted 4-aminopyrrolo[2,3-d]pyrimidines, including thiosangivamycin, is unstable in cell culture medium and is converted to the corresponding 5-nitrile with a half-life of approximately 48 h. In contrast, different substituents at the 4-position of the heterocycle significantly affected the stability of the 5-thioamide moiety. Conversion of the thioamide to the nitrile was caused by components in the cell culture medium, not components of serum. The above observations demonstrate that caution should be exercised in interpreting biological data obtained in vitro for 5-thioamide pyrrolo[2,3-d]pyrimidines.


Endocrinology | 2004

Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep.

Mohan Manikkam; Erica J. Crespi; Douglas D. Doop; Carol Herkimer; James S. Lee; Sunkyung Yu; Morton B. Brown; Douglas L. Foster; Vasantha Padmanabhan

Collaboration


Dive into the James S. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge