Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James S. M. Cuffe is active.

Publication


Featured researches published by James S. M. Cuffe.


Placenta | 2011

Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse

James S. M. Cuffe; Hayley Dickinson; David G. Simmons; Karen M. Moritz

OBJECTIVES Maternal glucocorticoid (GC) exposure during pregnancy can alter fetal development and program the onset of disease in adult offspring. The placenta helps protect the fetus from excess GC exposure but is itself susceptible to maternal insults and may be involved in sex dependant regulation of fetal programming. This study aimed to investigate the effects of maternal GC exposure on the developing placenta. STUDY DESIGN AND MAIN OUTCOME MEASURES Pregnant mice were treated with dexamethasone (DEX-1 μg/kg/h) or saline (SAL) for 60 h via minipump beginning at E12.5. Placentas were collected at E14.5 and E17.5 and the expression of growth factors and placental transporters examined by real-time PCR and/or Western blot. Histological analysis was performed to assess for morphological changes. RESULTS At E14.5, DEX exposed male and female fetuses had a lower weight compared to SAL animals but placental weight was lower in females only. Hsd11b2 and Vegfa gene expression was increased and MAPK1 protein expression decreased in the placentas of females only. At E17.5 placental and fetal body weights were similar and differences in MAPK were no longer present although HSD11B2 protein was elevated in placentas of DEX females. Levels of glucose or amino acid transporters were unaffected. CONCLUSIONS Results suggest sex specific responses to maternal GCs within the placenta. Decreased levels of MAPK protein in placentas of female fetuses suggest alterations in the MAPK pathway may contribute to the lower placental weights in this sex. This may contribute towards sex specific fetal programming of adult disease.


Endocrinology | 2012

Maternal Corticosterone Exposure in the Mouse Has Sex-Specific Effects on Placental Growth and mRNA Expression

James S. M. Cuffe; Lee O'Sullivan; David G. Simmons; S. T. Anderson; Karen M. Moritz

Maternal exposure to increased synthetic glucocorticoids (GC) during pregnancy is known to disturb fetal development and increase the risk of long-term disease. Maternal exposure to elevated levels of natural GC is likely to be common yet is relatively understudied. The placenta plays an important role in regulating fetal exposure to maternal GC but is itself vulnerable to maternal insults. This study uses a mouse model of maternal corticosterone (Cort) exposure to investigate its effects on the developing placenta. Mice were treated with Cort (33 μg/kg·h) for 60 h starting at embryonic d 12.5 (E12.5) before collection of placentas at E14.5 and E17.5. Although Cort exposure did not affect fetal size, placentas of male fetuses were larger at E17.5 in association with changes in placental Igf2. This increase in size was associated with an increase in placental thickness and an increase in placental junctional zone volume. Placentas from female fetuses were of normal size and had no changes in growth factor mRNA levels. The expression of the protective enzyme 11β-hydroxysteroid dehydrogenase type 2 was increased at E14.5 but was decreased in males at E17.5. In contrast, the expression of Nr3c1 (which encodes the GC receptor) was increased during the Cort exposure and remained elevated at E17.5 in the placentas of male fetuses. Our study has shown that maternal Cort exposure infers a sex-specific alteration to normal placental growth and growth factor expression, thus further adding to our understanding of the mechanisms of male dominance of programmed disease.


Clinical and Experimental Pharmacology and Physiology | 2012

Short and long term effects of exposure to natural and synthetic glucocorticoids during development

Reetu R. Singh; James S. M. Cuffe; Karen M. Moritz

Glucocorticoids (GCs) are necessary for fetal development, but clinical and experimental studies suggest that excess exposure may be detrimental to health in both the short and longer term. Exposure of the fetus to synthetic GCs can occur if the mother has a medical condition requiring GC therapy (e.g. asthma) or if she threatens to deliver her baby prematurely. Synthetic GCs can readily cross the placenta and treatment is beneficial, at least in the short term, for maternal health and fetal survival. Maternal stress during pregnancy can raise endogenous levels of the natural GC cortisol. A significant proportion of the cortisol is inactivated by the placental ‘GC barrier’. However, exposure to severe stress during pregnancy can result in increased risk of miscarriage, low birth weight and behavioural deficits in children. Animal studies have shown that excess exposure to both synthetic and natural GCs can alter normal organ development, including that of the heart, brain and kidney. The nature and severity of the organ impairment is dependent upon the timing of exposure and, in some cases, the type of GC used and the sex of the fetus. In animal models, exposure to elevated GCs during pregnancy has been associated with adult‐onset diseases, including elevated blood pressure, impaired cardiac and vascular function and altered metabolic function.


PLOS ONE | 2013

Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

Lee O'Sullivan; James S. M. Cuffe; Tamara M. Paravicini; Sally Campbell; Hayley Dickinson; Reetu R. Singh; Oksan Gezmish; M. Jane Black; Karen M. Moritz

Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5) on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX) exposed fetuses were growth restricted compared to saline treated controls (SAL) at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ∼3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.


The Journal of Physiology | 2014

Mid‐ to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex‐specific manner

James S. M. Cuffe; Sarah L. Walton; Reetu R. Singh; Jereme G. Spiers; Helle Bielefeldt-Ohmann; Lorine Wilkinson; Melissa H. Little; Karen M. Moritz

Maternal hypoxia is a common perturbation that may impair fetal development and programme sex specific disease outcomes in offspring. There is growing interest in the role of the placenta in mediating the effects of maternal hypoxia on fetal development, particularly in late gestation during maximal fetal growth. Multiple mechanisms have been proposed to play a role in hypoxia induced impairment of placental development. Here we investigated the role of glucocorticoids and glucose regulation. This study shows that fetal sex determines placental adaptations to maternal hypoxia: while maternal hypoxia increased maternal glucose and corticosterone levels in both sexes, placental adaptations to impaired maternal physiology were more evident in female fetuses, in which factors responsible for the regulation of glucocorticoids and nutrient transport were most severely affected by maternal hypoxia.


Placenta | 2014

Periconceptional alcohol consumption causes fetal growth restriction and increases glycogen accumulation in the late gestation rat placenta

Emelie M. Gårdebjer; James S. M. Cuffe; Marie Pantaleon; Mary E. Wlodek; Karen M. Moritz

INTRODUCTION Alcohol consumption is a common social practice among women of childbearing age. With 50% of pregnancies being unplanned, many embryos are exposed to alcohol prior to pregnancy recognition and formation of the placenta. The effects of periconceptional (PC) alcohol exposure on the placenta are unknown. METHODS Sprague-Dawley rats were exposed to alcohol (12.5% v/v ad libitum) from 4 days prior to 4 days after conception and effects on placental growth, morphology and gene/protein expression examined at embryonic day (E) 20. RESULTS PC ethanol (EtOH)-exposed fetuses were growth restricted and their placental/body weight ratio and placental cross-sectional area were increased. This was associated with an increase in cross-sectional area of the junctional zone and glycogen cells, especially in PC EtOH-exposed placentas from female fetuses. Junctional Glut1 and Igf2 mRNA levels were increased. Labyrinth Igf1 mRNA levels were decreased in placentas from both sexes, but protein IGF1R levels were decreased in placentas from male fetuses only. Labyrinth mRNA levels of Slc38a2 were decreased and Vegfa were increased in placentas following PC EtOH-exposure but only placentas from female fetuses exhibited increased Kdr expression. Augmented expression of the protective enzyme 11βHsd2 was found in PC EtOH-exposed labyrinth. DISCUSSION These observations are consistent with a stress response, apparent well beyond the period of EtOH-exposure and demonstrate that PC EtOH alters placental development in a sex specific manner. CONCLUSION Public awareness should be increased to educate women about how excessive drinking even before falling pregnant may impact on placental development and fetal health.


The Journal of Physiology | 2016

Programming of maternal and offspring disease: impact of growth restriction, fetal sex and transmission across generations

Jean N. Cheong; Mary E. Wlodek; Karen M. Moritz; James S. M. Cuffe

Babies born small are at an increased risk of developing myriad adult diseases. While growth restriction increases disease risk in all individuals, often a second hit is required to unmask ‘programmed’ impairments in physiology. Programmed disease outcomes are demonstrated more commonly in male offspring compared with females, with these sex‐specific outcomes partly attributed to different placenta‐regulated growth strategies of the male and female fetus. Pregnancy is known to be a major risk factor for unmasking a number of conditions and can be considered a ‘second hit’ for women who were born small. As such, female offspring often develop impairments of physiology for the first time during pregnancy that present as pregnancy complications. Numerous maternal stressors can further increase the risk of developing a maternal complication during pregnancy. Importantly, these maternal complications can have long‐term consequences for both the mother after pregnancy and the developing fetus. Conditions such as preeclampsia, gestational diabetes and hypertension as well as thyroid, liver and kidney diseases are all conditions that can complicate pregnancy and have long‐term consequences for maternal and offspring health. Babies born to mothers who develop these conditions are often at a greater risk of developing disease in adulthood. This has implications as a mechanism for transmission of disease across generations. In this review, we discuss the evidence surrounding long‐term intergenerational implications of being born small and/or experiencing stress during pregnancy on programming outcomes.


American Journal of Physiology-renal Physiology | 2015

Excess prenatal corticosterone exposure results in albuminuria, sex-specific hypotension, and altered heart rate responses to restraint stress in aged adult mice

Lee O'Sullivan; James S. M. Cuffe; Anselm Koning; Reetu R. Singh; Tamara M. Paravicini; Karen M. Moritz

Exposure to excess glucocorticoids programs susceptibility to cardiovascular and renal dysfunction in later life although the mechanisms have not been clearly elucidated. We administered corticosterone (CORT; 33 μg·kg(-1)·h(-1)) to pregnant mice for 60 h from embryonic day (E) 12.5. Prenatal CORT resulted in postnatal growth restriction and reduced nephron endowment at postnatal day 30 in both male and female offspring. The reduction in nephron number was associated with increased expression of apoptotic markers in the kidney at E14.5. In offspring of both sexes at 12 mo of age, there were no differences in kidney weights, urine output, or urinary sodium excretion; however, prenatal CORT exposure increased the urinary albumin/creatinine ratio and 24-h urinary albumin excretion. Surprisingly, at 12 mo male but not female offspring exposed to prenatal CORT were hypotensive, with mean arterial blood pressures ∼10 mmHg lower than untreated controls (P < 0.001). Finally, we examined how offspring responded to a renal or cardiovascular challenge (saline load or restraint stress). When given 0.9% NaCl as drinking water for 7 days, there were no differences in blood pressures or urinary parameters between groups. Restraint stress (15 min) caused a tachycardic response in all animals; however the increase in heart rate was not sustained in male offspring exposed to CORT (P < 0.01), suggesting that autonomic control of cardiovascular function may be altered. These data demonstrate that excess prenatal CORT impairs kidney development and increases the risk of cardiovascular dysfunction especially in males.


Placenta | 2017

Review: Placental derived biomarkers of pregnancy disorders

James S. M. Cuffe; Olivia J. Holland; Carlos Salomon; Gregory E. Rice; Anthony V. Perkins

Pregnancy is one of the greatest physiological challenges that a women can experience. The physiological adaptations that accompany pregnancy may increase the risk of developing a number of disorders that can lead to both acute and chronic physiological outcomes. In addition, fetal development may be impaired and, if the fetus survives, the child may be at an increased risk of disease throughout life. Pregnancy disorders are poorly predicted by traditional risk factors and maternal history alone. The identification of biomarkers that can predict incidence and severity of disease would allow for improved and targeted prophylactic therapies to prevent adverse maternal and fetal outcomes. Many of these pregnancy disorders, including preeclampsia, intrauterine growth restriction, gestational diabetes mellitus and preterm birth are known to be regulated at least in part by poor trophoblast invasion and/or dysregulated placental function. Cellular stress within the placenta increases the release of a number of factors into the maternal circulation. While many of these factors minimally impact maternal biology, others affect key physiological systems and contribute to disease. Importantly, these factors may be detected in physiological fluids and have predictive capacity making them ideal candidates as biomarkers of pregnancy disorders. This review will discuss what is known about these placental derived biomarkers of pregnancy disorders and highlight potential clinical opportunities for disease prediction and diagnosis.


Physiological Reports | 2016

Maternal corticosterone exposure in the mouse programs sex-specific renal adaptations in the renin-angiotensin- aldosterone system in 6-month offspring

James S. M. Cuffe; Danielle J. Burgess; Lee O'Sullivan; Reetu R. Singh; Karen M. Moritz

Short‐term maternal corticosterone (Cort) administration at mid‐gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12‐month male but not female offspring. The renal renin–angiotensin–aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex‐specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex‐specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease.

Collaboration


Dive into the James S. M. Cuffe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reetu R. Singh

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee O'Sullivan

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Steane

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge