Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James S. Meabon is active.

Publication


Featured researches published by James S. Meabon.


Journal of Neuroinflammation | 2015

Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

William A. Banks; Alicia M. Gray; Michelle A. Erickson; Therese S. Salameh; Mamatha Damodarasamy; Nader Sheibani; James S. Meabon; Emily E. Wing; Yoichi Morofuji; David G. Cook; May J. Reed

BackgroundDisruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain.MethodsWe used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin.ResultsIn comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes.ConclusionsThe BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB.


The Journal of Neuroscience | 2013

Amyloid-β1–42 Slows Clearance of Synaptically Released Glutamate by Mislocalizing Astrocytic GLT-1

Annalisa Scimemi; James S. Meabon; Randall L. Woltjer; Jane M. Sullivan; Jeffrey S. Diamond; David G. Cook

GLT-1, the major glutamate transporter in the adult brain, is abundantly expressed in astrocytic processes enveloping synapses. By limiting glutamate escape into the surrounding neuropil, GLT-1 preserves the spatial specificity of synaptic signaling. Here we show that the amyloid-β peptide Aβ1–42 markedly prolongs the extracellular lifetime of synaptically released glutamate by reducing GLT-1 surface expression in mouse astrocytes and that this effect is prevented by the vitamin E derivative Trolox. These findings indicate that astrocytic glutamate transporter dysfunction may play an important role in the pathogenesis of Alzheimers disease and suggest possible mechanisms by which several current treatment strategies could protect against the disease.


Neuron | 2009

LIG Family Receptor Tyrosine Kinase-Associated Proteins Modulate Growth Factor Signals during Neural Development

Kenji Mandai; Ting Guo; Coryse St. Hillaire; James S. Meabon; Kevin C. Kanning; Mark Bothwell; David D. Ginty

Genome-wide screens were performed to identify transmembrane proteins that mediate axonal growth, guidance and target field innervation of somatosensory neurons. One gene, Linx (alias Islr2), encoding a leucine-rich repeat and immunoglobulin (LIG) family protein, is expressed in a subset of developing sensory and motor neurons. Domain and genomic structures of Linx and other LIG family members suggest that they are evolutionarily related to Trk receptor tyrosine kinases (RTKs). Several LIGs, including Linx, are expressed in subsets of somatosensory and motor neurons, and select members interact with TrkA and Ret RTKs. Moreover, axonal projection defects in mice harboring a null mutation in Linx resemble those in mice lacking Ngf, TrkA, and Ret. In addition, Linx modulates NGF-TrkA- and GDNF-GFRalpha1/Ret-mediated axonal extension in cultured sensory and motor neurons, respectively. These findings show that LIGs physically interact with RTKs and modulate their activities to control axonal extension, guidance and branching.


PLOS ONE | 2010

Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells.

Jesse C. Wiley; James S. Meabon; Harald Frankowski; Elise Smith; Leslayann C. Schecterson; Mark Bothwell; Warren C. Ladiges

Background The familial and sporadic forms of Alzheimers disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimers disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in ‘loss of function’ of γ-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit. Methodology/Principal Findings The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay γ-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling—a biochemical marker of ER stress. Co-treatment of the γ-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated γ-secretase mediated cleavage of APP by 8–10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic α/γ-cleavage. Conclusions/Significance ER stress represses γ-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate α/γ-cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics.


The Journal of Physiology | 2006

Mechanisms underlying variations in excitation–contraction coupling across the mouse left ventricular free wall

Keith W. Dilly; Charles F. Rossow; V. Scott Votaw; James S. Meabon; Jennifer L. Cabarrus; Luis F. Santana

Ca2+ release during excitation–contraction (EC) coupling varies across the left ventricular free wall. Here, we investigated the mechanisms underlying EC coupling differences between mouse left ventricular epicardial (Epi) and endocardial (Endo) myocytes. We found that diastolic and systolic [Ca2+]i was higher in paced Endo than in Epi myocytes. Our data indicated that differences in action potential (AP) waveform between Epi and Endo cells only partially accounted for differences in [Ca2+]i. Rather, we found that the amplitude of the [Ca2+]i transient, but not its trigger – the Ca2+ current – was larger in Endo than in Epi cells. We also found that spontaneous Ca2+ spark activity was about 2.8‐fold higher in Endo than in Epi cells. Interestingly, ryanodine receptor type 2 (RyR2) protein expression was nearly 2‐fold higher in Endo than in Epi myocytes. Finally, we observed less Na+–Ca2+ exchanger function in Endo than in Epi cells, which was associated with decreased Ca2+ efflux during the AP; this contributed to higher diastolic [Ca2+]i and SR Ca2+ in Endo than in Epi cells during pacing. We propose that transmural differences in AP waveform, SR Ca2+ release, and Na+–Ca2+ exchanger function underlie differences in [Ca2+]i and EC coupling across the left ventricular free wall.


Journal of Alzheimer's Disease | 2011

GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model.

Paramita Mookherjee; Pattie S. Green; G. Stennis Watson; Marcos A. Marques; Kohichi Tanaka; Kole D. Meeker; James S. Meabon; Ning Li; Ping Zhu; Valerie G. Olson; David G. Cook

Glutamate transporters regulate normal synaptic network interactions and prevent neurotoxicity by rapidly clearing extracellular glutamate. GLT-1, the dominant glutamate transporter in the cerebral cortex and hippocampus, is significantly reduced in Alzheimers disease (AD). However, the role GLT-1 loss plays in the cognitive dysfunction and pathology of AD is unknown. To determine the significance of GLT-1 dysfunction on AD-related pathological processes, mice lacking one allele for GLT-1(+/-) were crossed with transgenic mice expressing mutations of the amyloid-β protein precursor and presenilin-1 (AβPPswe/PS1ΔE9) and investigated at 6 or 9 months of age. Partial loss of GLT-1 unmasked spatial memory deficits in 6-month-old mice expressing AβPPswe/PS1ΔE9, with these mice also exhibiting an increase in the ratio of detergent-insoluble Aβ42/Aβ40. At 9 months both behavioral performance and insoluble Aβ42/Aβ40 ratios among GLT-1(+/+)/AβPPswe/PS1ΔE9 and GLT-1(+/-)/AβPPswe/PS1ΔE9 mice were comparable. These results suggest that deficits in glutamate transporter function compound the effects of familial AD AβPP/PS1 mutant transgenes in younger animals and thus may contribute to early occurring pathogenic processes associated with AD.


Science Translational Medicine | 2016

Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction.

James S. Meabon; Bertrand R. Huber; Donna J. Cross; Todd L. Richards; Satoshi Minoshima; Kathleen F. Pagulayan; Ge Li; Kole D. Meeker; Brian C. Kraemer; Eric C. Petrie; Murray A. Raskind; Elaine R. Peskind; David G. Cook

Ventral regions of the cerebellum in combat veterans and mice are vulnerable to long-term traumatic brain injury caused by repetitive blast exposure. The cerebellum is vulnerable to blast injury in mice and combat veterans Mild traumatic brain injury (TBI) is often referred to as the “signature injury” of the wars in Iraq and Afghanistan. Most of these TBIs are blast-related. Currently, there is limited understanding of how mild blast causes persistent brain injuries. There is also limited insight into how blast-induced brain injuries in animal models correspond to humans with mild TBI. Meabon et al. report that the cerebellum, a brain structure important for integrating sensory information and movement, is injured by blast exposure in mice in specific areas that correspond to abnormal brain imaging findings obtained in similar cerebellar regions in blast-exposed combat veterans. Blast exposure can cause mild traumatic brain injury (TBI) in mice and other mammals. However, there are important gaps in our understanding of the neuropathology underlying repetitive blast exposure in animal models compared to the neuroimaging abnormalities observed in blast-exposed veterans. Moreover, how an increase in the number of blast exposures affects neuroimaging endpoints in blast-exposed humans is not well understood. We asked whether there is a dose-response relationship between the number of blast-related mild TBIs and uptake of 18F-fluorodeoxyglucose (FDG), a commonly used indicator of neuronal activity, in the brains of blast-exposed veterans with mild TBI. We found that the number of blast exposures correlated with FDG uptake in the cerebellum of veterans. In mice, blast exposure produced microlesions in the blood-brain barrier (BBB) predominantly in the ventral cerebellum. Purkinje cells associated with these BBB microlesions displayed plasma membrane disruptions and aberrant expression of phosphorylated tau protein. Purkinje cell loss was most pronounced in the ventral cerebellar lobules, suggesting that early-stage breakdown of BBB integrity may be an important factor driving long-term brain changes. Blast exposure caused reactive gliosis in mouse cerebellum, particularly in the deep cerebellar nuclei. Diffusion tensor imaging tractography of the cerebellum of blast-exposed veterans revealed that mean diffusivity correlated negatively with the number of blast-related mild TBIs. Together, these results argue that the cerebellum is vulnerable to repetitive mild TBI in both mice and humans.


Neuroscience | 2016

Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction

Bertrand R. Huber; James S. Meabon; Z.S. Hoffer; Jing Zhang; J.G. Hoekstra; Kathleen F. Pagulayan; Pamela J. McMillan; Cynthia Mayer; William A. Banks; Brian C. Kraemer; Murray A. Raskind; D.B. McGavern; Elaine R. Peskind; David G. Cook

Exposure to blast overpressure (BOP) is associated with behavioral, cognitive, and neuroimaging abnormalities. We investigated the dynamic responses of cortical vasculature and its relation to microglia/macrophage activation in mice using intravital two-photon microscopy following mild blast exposure. We found that blast caused vascular dysfunction evidenced by microdomains of aberrant vascular permeability. Microglial/macrophage activation was specifically associated with these restricted microdomains, as evidenced by rapid microglial process retraction, increased ameboid morphology, and escape of blood-borne Q-dot tracers that were internalized in microglial/macrophage cell bodies and phagosome-like compartments. Microdomains of cortical vascular disruption and microglial/macrophage activation were also associated with aberrant tight junction morphology that was more prominent after repetitive (3×) blast exposure. Repetitive, but not single, BOPs also caused TNFα elevation two weeks post-blast. In addition, following a single BOP we found that aberrantly phosphorylated tau rapidly accumulated in perivascular domains, but cleared within four hours, suggesting it was removed from the perivascular area, degraded, and/or dephosphorylated. Taken together these findings argue that mild blast exposure causes an evolving CNS insult that is initiated by discrete disturbances of vascular function, thereby setting the stage for more protracted and more widespread neuroinflammatory responses.


Journal of Biological Chemistry | 2015

LINGO-1 protein interacts with the p75 neurotrophin receptor in intracellular membrane compartments

James S. Meabon; Rian de Laat; Katsuaki Ieguchi; Jesse C. Wiley; Mark P. Hudson; Mark Bothwell

Background: LINGO-1·p75NTR·NgR complexes at the cell surface are believed to mediate responses to myelin inhibitors of axon growth. Results: LINGO-1 is intracellular and competes with NgR for binding to p75NTR. Conclusion: The existence of cell-surface ternary complexes of p75NTR, NgR, and LINGO-1 cannot be confirmed. Significance: The commonly accepted mechanism for p75NTR-mediated responses of axons to inhibitory myelin proteins is untenable. Axon outgrowth inhibition in response to trauma is thought to be mediated via the binding of myelin-associated inhibitory factors (e.g. Nogo-66, myelin-associated glycoprotein, oligodendrocyte myelin glycoprotein, and myelin basic protein) to a putative tripartite LINGO-1·p75NTR·Nogo-66 receptor (NgR) complex at the cell surface. We found that endogenous LINGO-1 expression in neurons in the cortex and cerebellum is intracellular. Mutation or truncation of the highly conserved LINGO-1 C terminus altered this intracellular localization, causing poor intracellular retention and increased plasma membrane expression. p75NTR associated predominantly with natively expressed LINGO-1 containing immature N-glycans, characteristic of protein that has not completed trans-Golgi-mediated processing, whereas mutant forms of LINGO-1 with enhanced plasma membrane expression did not associate with p75NTR. Co-immunoprecipitation experiments demonstrated that LINGO-1 and NgR competed for binding to p75NTR in a manner that is difficult to reconcile with the existence of a LINGO-1·p75NTR·NgR ternary complex. These findings contradict models postulating functional LINGO-1·p75NTR·NgR complexes in the plasma membrane.


Journal of Alzheimer's Disease | 2015

Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease

Kole D. Meeker; James S. Meabon; David G. Cook

The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimers disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.

Collaboration


Dive into the James S. Meabon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kole D. Meeker

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eric C. Petrie

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Mayer

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mark Bothwell

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge