Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Sandy is active.

Publication


Featured researches published by James Sandy.


Nature Structural & Molecular Biology | 2000

Structure of arylamine N-acetyltransferase reveals a catalytic triad

John Sinclair; James Sandy; Rupika Delgoda; Edith Sim; Martin Noble

Enzymes of the arylamine N-acetyltransferase (NAT) family are found in species ranging from Escherichia coli to humans. In humans they are known to be responsible for the acetylation of a number of arylamine and hydrazine drugs, and they are strongly linked to the carcinogenic potentiation of certain foreign substances. In prokaryotes their substrate specificities may vary and members of the gene family have been linked to pathways including amide synthesis during rifamycin production. Here we report the crystal structure at 2.8 Å resolution of a representative member of this family from Salmonella typhimurium in the presence and absence of a covalently bound product analog. The structure reveals surprising mechanistic information including the presence of a Cys-His-Asp catalytic triad. The fold can be described in terms of three domains of roughly equal length with the second and third domains linked by an interdomain helix. The first two domains, a helical bundle and a β-barrel, make up the catalytic triad using a structural motif identical to that of the cysteine protease superfamily.


Trends in Pharmacological Sciences | 2001

Arylamine N-acetyltransferases – of mice, men and microorganisms

Anna Upton; Nichola Johnson; James Sandy; Edith Sim

Arylamine N-acetyltransferases (NATs) catalyse the transfer of an acetyl group from acetyl CoA to the terminal nitrogen of hydrazine and arylamine drugs and carcinogens. These enzymes are polymorphic and have an important place in the history of pharmacogenetics, being first identified as responsible for the polymorphic inactivation of the anti-tubercular drug isoniazid. NAT has recently been identified within Mycobacterium tuberculosis itself and is an important candidate for modulating the response of mycobacteria to isoniazid. The first three-dimensional structure of the unique NAT family shows the active-site cysteine to be aligned with conserved histidine and aspartate residues to form a catalytic triad, thus providing an activation mechanism for transfer of the acetyl group from acetyl CoA to cysteine. The unique fold could allow different members of the NAT family to play a variety of roles in endogenous and xenobiotic metabolism.


Journal of Molecular Biology | 2002

The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis--an enzyme which inactivates the anti-tubercular drug, isoniazid.

James Sandy; Adeel Mushtaq; Akane Kawamura; John Sinclair; Edith Sim; Martin Noble

Arylamine N-acetyltransferases which acetylate and inactivate isoniazid, an anti-tubercular drug, are found in mycobacteria including Mycobacterium smegmatis and Mycobacterium tuberculosis. We have solved the structure of arylamine N-acetyltransferase from M. smegmatis at a resolution of 1.7 A as a model for the highly homologous NAT from M. tuberculosis. The fold closely resembles that of NAT from Salmonella typhimurium, with a common catalytic triad and domain structure that is similar to certain cysteine proteases. The detailed geometry of the catalytic triad is typical of enzymes which use primary alcohols or thiols as activated nucleophiles. Thermal mobility and structural variations identify parts of NAT which might undergo conformational changes during catalysis. Sequence conservation among eubacterial NATs is restricted to structural residues of the protein core, as well as the active site and a hinge that connects the first two domains of the NAT structure. The structure of M. smegmatis NAT provides a template for modelling the structure of the M. tuberculosis enzyme and for structure-based ligand design as an approach to designing anti-TB drugs.


Protein Science | 2005

Binding of the anti-tubercular drug isoniazid to the arylamine N-acetyltransferase protein from Mycobacterium smegmatis

James Sandy; Simon J. Holton; Elizabeth Fullam; Edith Sim; Martin Noble

Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug‐resistant strains of TB. Arylamine N‐acetyltransferase (NAT) is a drug‐metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N‐acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti‐tubercular therapy.


Biochemical Journal | 2005

Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines

James Sandy; Adeel Mushtaq; Simon J. Holton; Pamela Schartau; Martin Noble; Edith Sim

The NATs (arylamine N-acetyltransferases) are a well documented family of enzymes found in both prokaryotes and eukaryotes. NATs are responsible for the acetylation of a range of arylamine, arylhydrazine and hydrazine compounds. We present here an investigation into the catalytic triad of residues (Cys-His-Asp) and other structural features of NATs using a variety of methods, including site-directed mutagenesis, X-ray crystallography and bioinformatics analysis, in order to investigate whether each of the residues of the catalytic triad is essential for catalytic activity. The catalytic triad of residues, Cys-His-Asp, is a well defined motif present in several families of enzymes. We mutated each of the catalytic residues in turn to investigate the role they play in catalysis. We also mutated a key residue, Gly126, implicated in acetyl-CoA binding, to examine the effects on acetylation activity. In addition, we have solved the structure of a C70Q mutant of Mycobacterium smegmatis NAT to a resolution of 1.45 A (where 1 A=0.1 nm). This structure confirms that the mutated protein is correctly folded, and provides a structural model for an acetylated NAT intermediate. Our bioinformatics investigation analysed the extent of sequence conservation between all eukaryotic and prokaryotic NAT enzymes for which sequence data are available. This revealed several new sequences, not yet reported, of NAT paralogues. Together, these studies have provided insight into the fundamental core of NAT enzymes, and the regions where sequence differences account for the functional diversity of this family. We have confirmed that each of the three residues of the triad is essential for acetylation activity.


Current Drug Metabolism | 2008

Arylamine N-Acetyltransferases in Mycobacteria

Edith Sim; James Sandy; Dimitrios Evangelopoulos; Elizabeth Fullam; Sanjib Bhakta; Isaac M. Westwood; Anna Krylova; Nathan A. Lack; Martin Noble

Polymorphic Human arylamine N-acetyltransferase (NAT2) inactivates the anti-tubercular drug isoniazid by acetyltransfer from acetylCoA. There are active NAT proteins encoded by homologous genes in mycobacteria including M. tuberculosis, M. bovis BCG, M. smegmatis and M. marinum. Crystallographic structures of NATs from M. smegmatis and M. marinum, as native enzymes and with isoniazid bound share a similar fold with the first NAT structure, Salmonella typhimurium NAT. There are three approximately equal domains and an active site essential catalytic triad of cysteine, histidine and aspartate in the first two domains. An acetyl group from acetylCoA is transferred to cysteine and then to the acetyl acceptor e.g. isoniazid. M. marinum NAT binds CoA in a more open mode compared with CoA binding to human NAT2. The structure of mycobacterial NAT may promote its role in synthesis of cell wall lipids, identified through gene deletion studies. NAT protein is essential for survival of M. bovis BCG in macrophage as are the proteins encoded by other genes in the same gene cluster (hsaA-D). HsaA-D degrade cholesterol, essential for mycobacterial survival inside macrophage. Nat expression remains to be fully understood but is co-ordinated with hsaA-D and other stress response genes in mycobacteria. Amide synthase genes in the streptomyces are also nat homologues. The amide synthases are predicted to catalyse intramolecular amide bond formation and creation of cyclic molecules, e.g. geldanamycin. Lack of conservation of the CoA binding cleft residues of M. marinum NAT suggests the amide synthase reaction mechanism does not involve a soluble CoA intermediate during amide formation and ring closure.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2005

Structure of Mesorhizobium loti arylamine N-acetyltransferase 1

Simon J. Holton; James Sandy; Fernando Rodrigues-Lima; Jean-Marie Dupret; Martin Noble; Edith Sim

The arylamine N-acetyltransferase (NAT) enzymes have been found in a broad range of both eukaryotic and prokaryotic organisms. The NAT enzymes catalyse the transfer of an acetyl group from acetyl Co-enzyme A onto the terminal nitrogen of a range of arylamine, hydrazine and arylhydrazine compounds. Recently, several NAT structures have been reported from different prokaryotic sources including Salmonella typhimurium, Mycobacterium smegmatis and Pseudomonas aeruginosa. Bioinformatics analysis of the Mesorhizobium loti genome revealed two NAT paralogues, the first example of multiple NAT isoenzymes in a eubacterial organism. The M. loti NAT 1 enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme was crystallized in 0.5 M Ca(OAc)2, 16% PEG 3350, 0.1 M Tris-HCl pH 8.5 using the sitting-drop vapour-diffusion method. A data set diffracting to 2.0 A was collected from a single crystal at 100 K. The crystal belongs to the orthorhombic spacegroup P2(1)2(1)2(1), with unit-cell parameters a = 53.2, b = 97.3, c = 114.3 A. The structure was refined to a final free-R factor of 24.8%. The structure reveals that despite low sequence homology, M. loti NAT1 shares the common fold as reported in previous NAT structures and exhibits the same catalytic triad of residues (Cys-His-Asp) in the active site.


Biochimica et Biophysica Acta | 2003

NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Salmonella typhimurium.

Rupika Delgoda; Lu-Yun Lian; James Sandy; Edith Sim

Arylamine N-acetyltransferases (NAT) are a family of enzymes found in both eucaryotes and procaryotes, which catalyse the N-acetylation of a range of arylamine and hydrazine drugs and carcinogenic arylamines, using acetyl Coenzyme A as a cofactor. Here we describe a nuclear magnetic resonance (NMR) investigation of the interaction of substrates with Salmonella typhimurium NAT. For solution NMR investigations, pure recombinant NAT from S. typhimurium was used at up to 0.1 mM. We demonstrate that a hydrazine substrate, isoniazid (INH), binds to the protein in the absence of the cofactor, acetyl CoA, and thereby suggest that even though the catalysis may follow a ping-pong pathway, ligand-enzyme interactions can occur in the absence of acetyl CoA.


Combinatorial Chemistry & High Throughput Screening | 2011

Novel small-molecule inhibitors of arylamine N-acetyltransferases: drug discovery by high-throughput screening.

Isaac M. Westwood; Akane Kawamura; Angela J. Russell; James Sandy; Stephen G. Davies; Edith Sim

Arylamine N-acetyltransferases (NATs) are a family of enzymes found in eukaryotes and prokaryotes. While the precise endogenous function of NAT remains unknown for most organisms, recent evidence has shown that the expression of human NAT1 is up-regulated in estrogen receptor positive breast cancer. Additionally, NAT in mycobacteria is required for mycobacterial cell wall biosynthesis and survival of the organisms within macrophage. It is therefore important to develop small molecule inhibitors of NATs as molecular tools to study the function of NATs in various organisms. Such inhibitors may also prove useful in future drug design, for example in the development of anti tubercular agents. We describe a high-throughput screen of a proprietary library of 5016 drug-like compounds against three prokaryotic NAT enzymes and two eukaryotic NAT enzymes.


Protein Expression and Purification | 2003

Structural investigation of mutant Mycobacterium smegmatis arylamine N-acetyltransferase: a model for a naturally occurring functional polymorphism in Mycobacterium tuberculosis arylamine N-acetyltransferase

Akane Kawamura; James Sandy; Anna Upton; Martin Noble; Edith Sim

Arylamine N-acetyltransferase (NAT) acetylates the front-line anti-tuberculosis drug isoniazid (INH) and has been identified in Mycobacterium tuberculosis. A naturally occurring single nucleotide polymorphism (SNP) was recently found in the NAT gene in clinical isolates of M. tuberculosis. The nucleotide change from G-->A (619) produces an amino acid change Gly(207) Arg, which appears to reduce the activity of the NAT from M. tuberculosis (TBNAT). It has not been possible to generate sufficient soluble recombinant TBNAT for 3D structural studies. Therefore, Mycobacterium smegmatis NAT (SMNAT), which has 60% identity to TBNAT and has Gly at 207, was used as a model to investigate the possible structural effects of the G-->A 619 SNP. The mutant form of SMnat (SM207Rnat) was constructed by in vitro site-directed mutagenesis and was heterologously expressed with an N-terminal His tag in Escherichia coli, for comparison with the SMNAT. Both recombinant SMNATs were purified using Ni affinity chromatography and treated with thrombin to cleave the tag. Both proteins were produced with average yields of over 10 mg/L and were active. Substrate specificity and thermal stability of SM207RNAT were assessed and compared with the wild type SMNAT using kinetic assays and circular dichroism spectroscopy. SM207RNAT was crystallised and a data set of 2.00 A resolution was obtained. The SM207RNAT had different substrate specificities to the wild type protein and the 3D structures revealed that the Gly(207) Arg mutation caused slight changes in the orientation of His(203) in SMNAT.

Collaboration


Dive into the James Sandy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Sanchez-Weatherby

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Mazzorana

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

David R. Hall

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge