James Stephen Bell
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James Stephen Bell.
American Journal of Physiology-endocrinology and Metabolism | 2013
N. Alkhouli; Jessica C. Mansfield; Ellen Green; James Stephen Bell; Bridget A. Knight; Neil H. Liversedge; J. C. Tham; R. Welbourn; Angela C. Shore; Katarina Kos; C.P. Winlove
Adipose tissue (AT) expansion in obesity is characterized by cellular growth and continuous extracellular matrix (ECM) remodeling with increased fibrillar collagen deposition. It is hypothesized that the matrix can inhibit cellular expansion and lipid storage. Therefore, it is important to fully characterize the ECMs biomechanical properties and its interactions with cells. In this study, we characterize and compare the mechanical properties of human subcutaneous and omental tissues, which have different physiological functions. AT was obtained from 44 subjects undergoing surgery. Force/extension and stress/relaxation data were obtained. The effects of osmotic challenge were measured to investigate the cellular contribution to tissue mechanics. Tissue structure and its response to tensile strain were determined using nonlinear microscopy. AT showed nonlinear stress/strain characteristics of up to a 30% strain. Comparing paired subcutaneous and omental samples (n = 19), the moduli were lower in subcutaneous: initial 1.6 ± 0.8 (means ± SD) and 2.9 ± 1.5 kPa (P = 0.001), final 11.7 ± 6.4 and 32 ± 15.6 kPa (P < 0.001), respectively. The energy dissipation density was lower in subcutaneous AT (n = 13): 0.1 ± 0.1 and 0.3 ± 0.2 kPa, respectively (P = 0.006). Stress/relaxation followed a two-exponential time course. When the incubation medium was exchanged for deionized water in specimens held at 30% strain, force decreased by 31%, and the final modulus increased significantly. Nonlinear microscopy revealed collagen and elastin networks in close proximity to adipocytes and a larger-scale network of larger fiber bundles. There was considerable microscale heterogeneity in the response to strain in both cells and matrix fibers. These results suggest that subcutaneous AT has greater capacity for expansion and recovery from mechanical deformation than omental AT.
Interface Focus | 2014
Ellen Green; Jessica C. Mansfield; James Stephen Bell; C. Peter Winlove
Elastin is a major component of tissues such as lung and blood vessels, and endows them with the long-range elasticity necessary for their physiological functions. Recent research has revealed the complexity of these elastin structures and drawn attention to the existence of extensive networks of fine elastin fibres in tissues such as articular cartilage and the intervertebral disc. Nonlinear microscopy, allowing the visualization of these structures in living tissues, is informing analysis of their mechanical properties. Elastic fibres are complex in composition and structure containing, in addition to elastin, an array of microfibrillar proteins, principally fibrillin. Raman microspectrometry and X-ray scattering have provided new insights into the mechanisms of elasticity of the individual component proteins at the molecular and fibrillar levels, but more remains to be done in understanding their mechanical interactions in composite matrices. Elastic tissue is one of the most stable components of the extracellular matrix, but impaired mechanical function is associated with ageing and diseases such as atherosclerosis and diabetes. Efforts to understand these associations through studying the effects of processes such as calcium and lipid binding and glycation on the mechanical properties of elastin preparations in vitro have produced a confusing picture, and further efforts are required to determine the molecular basis of such effects.
Experimental Eye Research | 2016
Philip Lewis; Tomas White; Robert D. Young; James Stephen Bell; C. Peter Winlove; Keith Michael Andrew Meek
The cornea is the main refracting lens in the eye. As part of the outer tunic it has to be resilient, a property conferred by the organisation of the constituent collagen. It also has to be sufficiently elastic to regain its exact shape when deformed, in order not to distort the retinal image. The basis of this elasticity is not fully understood. The purpose of this study was to characterise in three dimensions the arrangement and distribution of elastic fibers in the human corneal stroma, using serial block face scanning electron microscopy. We have demonstrated that there exists a complex network of elastic fibers that appear to originate in the sclera or limbus. These appear as elastic sheets in the limbus and peripheral cornea immediately above the trabecular meshwork which itself appears to extend above Descemets membrane in the peripheral stroma. From these sheets, elastic fibers extend into the cornea; moving centrally they bifurcate and trifurcate into narrower fibers and are concentrated in the posterior stroma immediately above Descemets membrane. We contend that elastic sheets will play an important role in the biomechanical deformation and recovery of the peripheral cornea. The network may also have practical implications for understanding the structural basis behind a number of corneal surgeries.
Acta Biomaterialia | 2014
James Stephen Bell; Jacqueline Christmas; Jessica C. Mansfield; Richard M. Everson; C.P. Winlove
Articular cartilage (AC) is a highly anisotropic biomaterial, and its complex mechanical properties have been a topic of intense investigation for over 60 years. Recent advances in the field of nonlinear optics allow the individual constituents of AC to be imaged in living tissue without the need for exogenous contrast agents. Combining mechanical testing with nonlinear microscopy provides a wealth of information about microscopic responses to load. This work investigates the inhomogeneous distribution of strain in loaded AC by tracking the movement and morphological changes of individual chondrocytes using point pattern matching and Bayesian modeling. This information can be used to inform models of mechanotransduction and pathogenesis, and is readily extendable to various other connective tissues.
Biomaterials | 2009
James Stephen Bell; C.P. Winlove; Christopher W. Smith; H. Dehghani
The transient response of articular cartilage (AC) to compressive loads has been described by complex multicomponent models. However, the steady-state behaviour is determined by the collagen network which is heterogeneous through the depth of the tissue, a characteristic which is omitted from most theoretical models. Experimental data are now available on the local responses of the network to compressive loads and the aim of this study was to develop minimal models capable of simulating this behaviour. A series of finite element models (FEMs) of AC under load were developed of increasing complexity, assuming the AC was i) completely homogeneous, ii) layered and isotropic and iii) layered and anisotropic. The geometry of the layered cartilage model was based on the recent experimental data. It is shown that a layered transversely isotropic elastic model is required to accurately recreate the experimental data. Stress distributions within the models are analysed, and the relevance of this work to transient modeling of AC is discussed. The work presented is a fundamental step forward in the understanding of the distribution of local physiological stresses and strains in AC, and has applications in modeling chondrocyte mechanotransduction as well as the effects of pathogenesis.
Investigative Ophthalmology & Visual Science | 2017
Tomas White; Philip Lewis; Sally Hayes; James Fergusson; James Stephen Bell; L. Farinha; Nicholas White; L. V. Pereira; Keith Michael Andrew Meek
Purpose The presence of fibrillin-rich elastic fibers in the cornea has been overlooked in recent years. The aim of the current study was to elucidate their functional role using a mouse model for Marfan syndrome, defective in fibrillin-1, the major structural component of the microfibril bundles that constitute most of the elastic fibers. Methods Mouse corneas were obtained from animals with a heterozygous fibrillin-1 mutation (Fbn1+/−) and compared to wild type controls. Corneal thickness and radius of curvature were calculated using optical coherence tomography microscopy. Elastic microfibril bundles were quantified and visualized in three-dimensions using serial block face scanning electron microscopy. Transmission electron microscopy was used to analyze stromal ultrastructure and proteoglycan distribution. Center-to-center average interfibrillar spacing was determined using x-ray scattering. Results Fbn1+/− corneas were significantly thinner than wild types and displayed a higher radius of curvature. In the Fbn1+/− corneas, elastic microfibril bundles were significantly reduced in density and disorganized compared to wild-type controls, in addition to containing a higher average center-to-center collagen interfibrillar spacing in the center of the cornea. No other differences were detected in stromal ultrastructure or proteoglycan distribution between the two groups. Proteoglycan side chains appeared to colocalize with the microfibril bundles. Conclusions Elastic fibers have an important, multifunctional role in the cornea as highlighted by the differences observed between Fbn1+/− and wild type animals. We contend that the presence of normal quantities of structurally organized elastic fibers are required to maintain the correct geometry of the cornea, which is disrupted in Marfan syndrome.
Osteoarthritis and Cartilage | 2015
Jessica C. Mansfield; James Stephen Bell; C.P. Winlove
OBJECTIVE To investigate the relationships between the unique mechanical and structural properties of the superficial zone of articular cartilage on the microscopic scale. DESIGN Fresh unstained equine metacarpophalangeal cartilage samples were mounted on tensile and compressive loading rigs on the stage of a multiphoton microscope. Sequential image stacks were acquired under incremental loads together with simultaneous measurements of the applied stress and strain. Second harmonic generation was used to visualise the collagen fibre network, while two photon fluorescence was used to visualise elastin fibres and cells. The changes visualised by each modality were tracked between successive loads. RESULTS The deformation of the cartilage matrix was heterogeneous on the microscopic length scale. This was evident from local strain maps, which showed shearing between different regions of collagen under tensile strain, corrugations in the articular surface at higher tensile strains and a non-uniform distribution of compressive strain in the axial direction. Chondrocytes elongated and rotated under tensile strain and were compressed in the axial direction under compressive load. The magnitude of deformation varied between cells, indicating differences in either load transmission through the matrix or the mechanical properties of individual cells. Under tensile loading the reorganisation of the elastin network differed from a homogeneous elastic response, indicating that it forms a functional structure. CONCLUSIONS This study highlights the complexity of superficial zone mechanics and demonstrates that the response of the collagen matrix, elastin fibres and chondrocytes are all heterogeneous on the microscopic scale.
Acta Biomaterialia | 2018
James Stephen Bell; Sally Hayes; Charles Whitford; J. Sanchez-Weatherby; Olga Shebanova; Claudio Vergari; C.P. Winlove; Nicholas J. Terrill; Thomas Alrik Sørensen; Ahmed Elsheikh; Keith Michael Andrew Meek
Graphical abstract
American Journal of Physiology-heart and Circulatory Physiology | 2016
James Stephen Bell; A. O. Adio; A. Pitt; L. Hayman; Clare E. Thorn; Angela C. Shore; Jacqueline L. Whatmore; C.P. Winlove
This is the first study to elucidate and quantify the microstructural bases of the mechanical properties of human resistance arteries. The geometrically accurate mechanical analysis provides new insights into strain fields existing in the walls of small arteries, and raises questions about the mechanobiology of vascular remodeling.
Journal of the Royal Society Interface | 2017
Sally Hayes; Tomas White; Craig Boote; Christina S. Kamma-Lorger; James Stephen Bell; Thomas Sorenson; Nicholas J. Terrill; Olga Shebanova; Keith Michael Andrew Meek
The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas (p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration (H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations (p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning.