Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James T. Griffiths is active.

Publication


Featured researches published by James T. Griffiths.


Physical Review B | 2015

Structural, electronic and optical properties of m-plane (In,Ga)N/GaN quantum wells: Insights from experiment and atomistic theory

S Schulz; Dp Tanner; Eoin P. O'Reilly; Miguel A. Caro; Tomas L Martin; P.A.J. Bagot; Michael P. Moody; Fengzai Tang; James T. Griffiths; Fabrice Oehler; M. J. Kappers; Rachel A. Oliver; Colin J. Humphreys; Danny Sutherland; Matthew J. Davies; Philip Dawson

In this paper we present a detailed analysis of the structural, electronic, and optical properties of an


Applied Physics Letters | 2015

Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

Fengzai Tang; Tongtong Zhu; Fabrice Oehler; Wai Yuen Fu; James T. Griffiths; Fabien Charles Massabuau; M. J. Kappers; Tomas L Martin; Paul A. J. Bagot; Michael P. Moody; Rachel A. Oliver

m


Nano Letters | 2015

Nanocathodoluminescence Reveals Mitigation of the Stark Shift in InGaN Quantum Wells by Si Doping

James T. Griffiths; Siyuan Zhang; Bertrand Rouet-Leduc; Wai Yuen Fu; An Bao; D. Zhu; David J. Wallis; Ashley Howkins; Ian W. Boyd; David Stowe; M. J. Kappers; Colin J. Humphreys; Rachel A. Oliver

-plane (In,Ga)N/GaN quantum well structure grown by metal organic vapor phase epitaxy. The sample has been structurally characterized by x-ray diffraction, scanning transmission electron microscopy, and 3D atom probe tomography. The optical properties of the sample have been studied by photoluminescence (PL), time-resolved PL spectroscopy, and polarized PL excitation spectroscopy. The PL spectrum consisted of a very broad PL line with a high degree of optical linear polarization. To understand the optical properties we have performed atomistic tight-binding calculations, and based on our initial atom probe tomography data, the model includes the effects of strain and built-in field variations arising from random alloy fluctuations. Furthermore, we included Coulomb effects in the calculations. Our microscopic theoretical description reveals strong hole wave function localization effects due to random alloy fluctuations, resulting in strong variations in ground state energies and consequently the corresponding transition energies. This is consistent with the experimentally observed broad PL peak. Furthermore, when including Coulomb contributions in the calculations we find strong exciton localization effects which explain the form of the PL decay transients. Additionally, the theoretical results confirm the experimentally observed high degree of optical linear polarization. Overall, the theoretical data are in very good agreement with the experimental findings, highlighting the strong impact of the microscopic alloy structure on the optoelectronic properties of these systems.


Journal of Applied Physics | 2016

The microstructure of non-polar a-plane (11 2¯0) InGaN quantum wells

James T. Griffiths; Fabrice Oehler; Fengzai Tang; Siyuan Zhang; Wai Yuen Fu; Tongtong Zhu; Scott D. Findlay; Changlin Zheng; Joanne Etheridge; Tomas L Martin; Paul A. J. Bagot; Micheal P Moody; Danny Sutherland; Philip Dawson; M. J. Kappers; Colin J. Humphreys; Rachel A. Oliver

Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.


Journal of Physical Chemistry C | 2017

Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

Nathaniel J. L. K. Davis; Francisco de la Peña; Maxim Tabachnyk; Johannes M. Richter; Robin Lamboll; Edward P. Booker; Florencia Wisnivesky Rocca Rivarola; James T. Griffiths; Caterina Ducati; S. Matthew Menke; Felix Deschler; Neil C. Greenham

Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices.


APL Materials | 2014

Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

James T. Griffiths; Tongtong Zhu; Fabrice Oehler; Robert M. Emery; Wai Yuen Fu; Bpl Reid; Robert A. Taylor; M. J. Kappers; Colin J. Humphreys; Rachel A. Oliver

Atom probe tomography and quantitative scanning transmission electron microscopy are used to assess the composition of non-polar a-plane (11-20) InGaN quantum wells for applications in optoelectronics. The average quantum well composition measured by atom probe tomography and quantitative scanning transmission electron microscopy quantitatively agrees with measurements by X-ray diffraction. Atom probe tomography is further applied to study the distribution of indium atoms in non-polar a-plane (11-20) InGaN quantum wells. An inhomogeneous indium distribution is observed by frequency distribution analysis of the atom probe tomography measurements. The optical properties of non-polar (11-20) InGaN quantum wells with indium compositions varying from 7.9% to 20.6% are studied. In contrast to non-polar m-plane (1-100) InGaN quantum wells, the non-polar a-plane (11-20) InGaN quantum wells emit at longer emission wavelengths at the equivalent indium composition. The non-polar a-plane (11-20) quantum wells also show broader spectral linewidths. The longer emission wavelengths and broader spectral linewidths may be related to the observed inhomogeneous indium distribution.


Journal of the American Chemical Society | 2018

Bottom-up Formation of Carbon-Based Structures with Multilevel Hierarchy from MOF–Guest Polyhedra

Tiesheng Wang; Hyun-Kyung Kim; Yingjun Liu; Weiwei Li; James T. Griffiths; Yue Wu; Sourav Laha; Kara D. Fong; Filip Podjaski; Chao Yun; R. Vasant Kumar; Bettina V. Lotsch; Anthony K. Cheetham; Stoyan K. Smoukov

Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core–shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exchange between perovskite nanocrystals of different compositions occurs rapidly, which is one of the limiting factors for white-light applications requiring a mixture of different crystal compositions to achieve a broad emission spectrum. Here, we use mixtures of chloride and iodide CsPbX3 (X = Cl, I) perovskite nanocrystals where anion exchange is significantly reduced. We investigate samples containing mixtures of perovskite nanocrystals with different compositions and study the resulting optical and electrical interactions. We report excitation transfer from CsPbCl3 to CsPbI3 in solution and within a poly(methyl methacrylate) matrix via photon reabsorption, which also occurs in electrically excited crystals in bulk heterojunction LEDs.


Ultramicroscopy | 2017

The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem

Colin J. Humphreys; James T. Griffiths; Fengzai Tang; Fabrice Oehler; Scott D. Findlay; Changxi Zheng; Joanne Etheridge; Tomas L Martin; P.A.J. Bagot; Michael P. Moody; Danny Sutherland; P. Dawson; S Schulz; Siyuan Zhang; Wai Yuen Fu; Tongtong Zhu; M. J. Kappers; Rachel A. Oliver

Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.


Journal of Applied Physics | 2016

Nano-cathodoluminescence reveals the effect of electron damage on the optical properties of nitride optoelectronics and the damage threshold

James T. Griffiths; Siyuan Zhang; Jeremy Lhuillier; D. Zhu; Wai Yuen Fu; Ashley Howkins; Ian W. Boyd; David Stowe; David J. Wallis; Colin J. Humphreys; Rachel A. Oliver

Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal–organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF–guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF–guest candidates.


Applied Physics Letters | 2017

Structural impact on the nanoscale optical properties of InGaN core-shell nanorods

James T. Griffiths; Christopher X. Ren; P-M Coulon; E. D. Le Boulbar; Cg Bryce; Ionut Gîrgel; Ashley Howkins; Ian W. Boyd; R. W. Martin; Dwe Allsopp; Philip A. Shields; Colin J. Humphreys; Rachel A. Oliver

We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

Collaboration


Dive into the James T. Griffiths's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tongtong Zhu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Wai Yuen Fu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley Howkins

Brunel University London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian W. Boyd

University College London

View shared research outputs
Top Co-Authors

Avatar

Siyuan Zhang

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge