Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James T. MacDonald is active.

Publication


Featured researches published by James T. MacDonald.


Journal of Hepatology | 2011

Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors

Andrew J. Syder; Haekyung Lee; Mirjam B. Zeisel; Joe Grove; Eric Soulier; James T. MacDonald; Stephine Chow; Julia Chang; Thomas F. Baumert; Jane A. McKeating; Jeffrey McKelvy; Flossie Wong-Staal

BACKGROUND AND AIMS ITX 5061 is a clinical stage small molecule compound that promotes high-density lipoprotein (HDL) levels in animals and patients by targeting the scavenger receptor BI protein pathway. Since SR-BI is a known co-receptor for HCV infection, we evaluated these compounds for their effects on HCV entry. METHODS We obtained ITX 5061 and related compounds to characterize their interaction with SR-BI and effects on HCV entry and infection. RESULTS We confirmed that a tritium-labeled compound analog (ITX 7650) binds cells expressing SR-BI, and both ITX 5061 and ITX 7650 compete for HDL-mediated lipid transfer in an SR-BI dependent manner. Both molecules inhibit HCVcc and HCVpp infection of primary human hepatocytes and/or human hepatoma cell lines and have minimal effects on HCV RNA replication. Kinetic studies suggest that the compounds act at an early post-binding step. CONCLUSIONS These results suggest that the ITX compounds inhibit HCV infection with a mechanism of action distinct from other HCV therapies under development. Since ITX 5061 has already been evaluated in over 280 patients with good pharmacokinetic and safety profiles, it warrants proof-of-concept clinical studies in HCV infected patients.


Nucleic Acids Research | 2014

One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy

Arturo Casini; James T. MacDonald; Joachim de Jonghe; Georgia Christodoulou; Paul S. Freemont; Geoff S. Baldwin; Tom Ellis

Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications.


Structure | 2009

Probing the “Dark Matter” of Protein Fold Space

William R. Taylor; Vijayalakshmi Chelliah; Siv Midtun Hollup; James T. MacDonald; Inge Jonassen

We used a protein structure prediction method to generate a variety of folds as alpha-carbon models with realistic secondary structures and good hydrophobic packing. The prediction method used only idealized constructs that are not based on known protein structures or fragments of them, producing an unbiased distribution. Model and native fold comparison used a topology-based method as superposition can only be relied on in similar structures. When all the models were compared to a nonredundant set of all known structures, only one-in-ten were found to have a match. This large excess of novel folds was associated with each protein probe and if true in general, implies that the space of possible folds is larger than the space of realized folds, in much the same way that sequence-space is larger than fold-space. The large excess of novel folds exhibited no unusual properties and has been likened to cosmological dark matter.


Frontiers in Bioengineering and Biotechnology | 2014

Developments in the tools and methodologies of synthetic biology.

Richard Kelwick; James T. MacDonald; Alexander J. Webb; Paul S. Freemont

Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community.


PLOS ONE | 2008

Pyrvinium Targets the Unfolded Protein Response to Hypoglycemia and Its Anti-Tumor Activity Is Enhanced by Combination Therapy

Dehua Yu; James T. MacDonald; Guohong Liu; Amy S. Lee; Mimi Ly; Timothy M. E. Davis; Ning Ke; Demin Zhou; Flossie Wong-Staal; Qi-Xiang Li

We identified pyrvinium pamoate, an old anthelminthic medicine, which preferentially inhibits anchorage-independent growth of cancer cells over anchorage-dependent growth (∼10 fold). It was also reported by others to have anti-tumor activity in vivo and selective toxicity against cancer cells under glucose starvation in vitro, but with unknown mechanism. Here, we provide evidence that pyrvinium suppresses the transcriptional activation of GRP78 and GRP94 induced by glucose deprivation or 2-deoxyglucose (2DG, a glycolysis inhibitor), but not by tunicamycin or A23187. Other UPR pathways induced by glucose starvation, e.g. XBP-1, ATF4, were also found suppressed by pyrvinium. Constitutive expression of GRP78 via transgene partially protected cells from pyrvinium induced cell death under glucose starvation, suggesting that suppression of the UPR is involved in pyrvinium mediated cytotoxicity under glucose starvation. Xenograft experiments showed rather marginal overall anti-tumor activity for pyrvinium as a monotherapy. However, the combination of pyrvinium and Doxorubicin demonstrated significantly enhanced efficacy in vivo, supporting a mechanistic treatment concept based on tumor hypoglycemia and UPR.


Proteins | 2010

De novo backbone scaffolds for protein design

James T. MacDonald; Katarzyna Maksimiak; Michael I. Sadowski; William R. Taylor

In recent years, there have been significant advances in the field of computational protein design including the successful computational design of enzymes based on backbone scaffolds from experimentally solved structures. It is likely that large‐scale sampling of protein backbone conformations will become necessary as further progress is made on more complicated systems. Removing the constraint of having to use scaffolds based on known protein backbones is a potential method of solving the problem. With this application in mind, we describe a method to systematically construct a large number of de novo backbone structures from idealized topological forms in a top–down hierarchical approach. The structural properties of these novel backbone scaffolds were analyzed and compared with a set of high‐resolution experimental structures from the protein data bank (PDB). It was found that the Ramachandran plot distribution and relative γ‐ and β‐turn frequencies were similar to those found in the PDB. The de novo scaffolds were sequence designed with RosettaDesign, and the energy distributions and amino acid compositions were comparable with the results for redesigned experimentally solved backbones. Proteins 2010.


ACS Synthetic Biology | 2014

R2oDNA designer: computational design of biologically neutral synthetic DNA sequences.

Arturo Casini; Georgia Christodoulou; Paul S. Freemont; Geoff S. Baldwin; Tom Ellis; James T. MacDonald

R2oDNA Designer is a web application that stochastically generates orthogonal sets of synthetic DNA sequences designed to be biologically neutral. Biologically neutral sequences may be used for directing efficient DNA assembly by overlap-directed methods, as a negative control for functional DNA, as barcodes, or potentially as spacer regions to insulate biological parts from local context. The software creates optimized sequences using a Monte Carlo simulated annealing approach followed by the elimination of sequences homologous to host genomes and commonly used biological parts. An orthogonal set is finally determined by using a network elimination algorithm. Design constraints can be defined using either a web-based graphical user interface (GUI) or uploading a file containing a set of text commands.


Journal of Computational Chemistry | 2013

High–quality protein backbone reconstruction from alpha carbons using Gaussian mixture models

Benjamin L. Moore; Lawrence A. Kelley; James Barber; James W. Murray; James T. MacDonald

Coarse‐grained protein structure models offer increased efficiency in structural modeling, but these must be coupled with fast and accurate methods to revert to a full‐atom structure. Here, we present a novel algorithm to reconstruct mainchain models from C traces. This has been parameterized by fitting Gaussian mixture models (GMMs) to short backbone fragments centered on idealized peptide bonds. The method we have developed is statistically significantly more accurate than several competing methods, both in terms of RMSD values and dihedral angle differences. The method produced Ramachandran dihedral angle distributions that are closer to that observed in real proteins and better Phaser molecular replacement log‐likelihood gains. Amino acid residue sidechain reconstruction accuracy using SCWRL4 was found to be statistically significantly correlated to backbone reconstruction accuracy. Finally, the PD2 method was found to produce significantly lower energy full‐atom models using Rosetta which has implications for multiscale protein modeling using coarse‐grained models. A webserver and C++ source code is freely available for noncommercial use from: http://www.sbg.bio.ic.ac.uk/phyre2/PD2_ca2main/.


Nucleic Acids Research | 2016

Delineation of metabolic gene clusters in plant genomes by chromatin signatures

Nan Yu; Hans-Wilhelm Nützmann; James T. MacDonald; Ben Moore; Ben Field; Souha Berriri; Martin Trick; Susan J. Rosser; S. Vinod Kumar; Paul S. Freemont; Anne Osbourn

Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.


Metabolic Engineering | 2016

Development of a Bacillus subtilis cell-free transcription-translation system for prototyping regulatory elements

Richard Kelwick; Alexander J. Webb; James T. MacDonald; Paul S. Freemont

Cell-free transcription-translation systems were originally applied towards in vitro protein production. More recently, synthetic biology is enabling these systems to be used within a systematic design context for prototyping DNA regulatory elements, genetic logic circuits and biosynthetic pathways. The Gram-positive soil bacterium, Bacillus subtilis, is an established model organism of industrial importance. To this end, we developed several B. subtilis-based cell-free systems. Our improved B. subtilis WB800N-based system was capable of producing 0.8µM GFP, which gave a ~72x fold-improvement when compared with a B. subtilis 168 cell-free system. Our improved system was applied towards the prototyping of a B. subtilis promoter library in which we engineered several promoters, derived from the wild-type Pgrac (σA) promoter, that display a range of comparable in vitro and in vivo transcriptional activities. Additionally, we demonstrate the cell-free characterisation of an inducible expression system, and the activity of a model enzyme - renilla luciferase.

Collaboration


Dive into the James T. MacDonald's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Ellis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge