Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James Tamura is active.

Publication


Featured researches published by James Tamura.


Bioanalysis | 2012

Pellet digestion: a simple and efficient sample preparation technique for LC–MS/MS quantification of large therapeutic proteins in plasma

Zheng Ouyang; Michael T. Furlong; Steven Wu; Bogdan Sleczka; James Tamura; Haiqing Wang; Suzanne J. Suchard; Anish Suri; Timothy Olah; Adrienne A. Tymiak; Mohammed Jemal

BACKGROUND There is a need for a simple and efficient sample preparation technique for LC-MS/MS quantification of large therapeutic proteins in plasma. RESULTS The sample preparation technique presented here is based upon trypsin digestion of the pellet obtained following precipitation of the protein analyte from plasma. The pellet digestion technique was shown to facilitate efficient digestion of large therapeutic proteins, with concomitant removal of a substantial amount of potentially problematic plasma phospholipids. The technique was successfully applied to a pharmacokinetic study of a large therapeutic protein. CONCLUSION This simple sample preparation approach will be beneficial to bioanalytical laboratories engaged in the LC-MS/MS quantification of large therapeutic proteins in biological matrices.


Protein Science | 2008

Involvement of DPP‐IV catalytic residues in enzyme–saxagliptin complex formation

William Metzler; Joseph Yanchunas; Carolyn A. Weigelt; Kevin Kish; Herbert E. Klei; Dianlin Xie; Yaqun Zhang; Martin J. Corbett; James Tamura; Bin He; Lawrence G. Hamann; Mark S. Kirby; Jovita Marcinkeviciene

The inhibition of DPP‐IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X‐ray crystal structure of the DPP‐IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C–O distance <1.3 Å). To investigate whether this serine addition is assisted by the catalytic His‐Asp dyad, we generated two mutants of DPP‐IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP‐IVH740Q bound saxagliptin with an ∼1000‐fold reduction in affinity relative to DPP‐IVWT, while DPP‐IVS630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism‐based inhibition by saxagliptin, NMR spectra of enzyme–saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild‐type and mutant DPP‐IV:ligand complexes enabled assignment of a resonance at ∼14 ppm to H740. Two additional DPP‐IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme–inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine‐assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.


Journal of Immunology | 2014

Engineering of a Novel Anti-CD40L Domain Antibody for Treatment of Autoimmune Diseases

Jenny Xie; Aaron P. Yamniuk; Virna Borowski; Robert Kuhn; Vojkan Susulic; Sandra Rex-Rabe; Xiaoxia Yang; Xiadi Zhou; Yifan Zhang; Kathleen M. Gillooly; Ruth Brosius; Rathna Ravishankar; Kimberly Waggie; Kathy Mink; Laura A. Price; Robert Rehfuss; James Tamura; Yongmi An; Lin Cheng; Bozena Abramczyk; Olga Ignatovich; Philip Drew; Steven Grant; James W. Bryson; Suzanne J. Suchard; Luisa Salter-Cid; Steven G. Nadler; Anish Suri

CD40–CD40L interactions play a critical role in regulating immune responses. Blockade of CD40L by Abs, such as the anti-CD40L Ab 5c8, demonstrated positive clinical effects in patients with autoimmune diseases; however, incidents of thromboembolism (TE) precluded further development of these molecules. In this study, we examined the role of the Fc domain interaction with FcγRs in modulating platelet activation and potential for TE. Our results show that the interaction of the 5c8 wild-type IgG1 Fc domain with FcγRs is responsible for platelet activation, as measured by induction of PAC-1 and CD62P. A version of 5c8 with a mutated IgG1 tail was identified that showed minimal FcγR binding and platelet activation while maintaining full binding to CD40L. To address whether Fc effector function is required for immunosuppression, a potent Ab fragment, termed a “domain Ab” (dAb), against murine CD40L was identified and fused to a murine IgG1 Fc domain containing a D265A mutation that lacks Fc effector function. In vitro, this dAb–Fc demonstrated comparable potency to the benchmark mAb MR-1 in inhibiting B cell and dendritic cell activation. Furthermore, the anti-CD40L dAb–Fc exhibited a notable efficacy comparable to MR-1 in various preclinical models, such as keyhole limpet hemocyanin–induced Ab responses, alloantigen-induced T cell proliferation, “heart-to-ear” transplantation, and NZB × NZW F1 spontaneous lupus. Thus, our data show that immunosuppression and TE can be uncoupled and that a CD40L dAb with an inert Fc tail is expected to be efficacious for treating autoimmune diseases, with reduced risk for TE.


Journal of Immunology | 2013

A Monovalent Anti-Human CD28 Domain Antibody Antagonist: Preclinical Efficacy and Safety

Suzanne J. Suchard; Patricia M. Davis; Selena Kansal; Dawn K. Stetsko; Ruth Brosius; James Tamura; Lumelle A. Schneeweis; James W. Bryson; Theodora W. Salcedo; Haiqing Wang; Zheng Yang; Catherine A. Fleener; Olga Ignatovich; Christopher Plummer; Steven Grant; Steven G. Nadler

Targeting the CD28-CD80/86 pathway with an anti-CD28 antagonist is a promising alternative to current therapies for autoimmunity. However, attempts at generating conventional anti-CD28 mAbs lacking stimulatory activity has been challenging. In this study, we describe anti-human CD28 receptor antagonist domain Abs (dAbs) that are specific for human CD28. These dAbs are potent inhibitors of T cell activation, with an EC50 of 35 ± 14 ng/ml for inhibition of proliferation. The EC50 of 53 ± 11 ng/ml in an ex vivo CD28 receptor occupancy assay corresponds with in vitro functional activity, suggesting a direct correlation. The anti-CD28 dAb is equipotent in the inhibition of CD80- and CD86-mediated T cell proliferation and does not interfere with CTLA-4–mediated downmodulation of CD86 expression on APCs. The anti-CD28 dAbs are monomeric and do not demonstrate any evidence of agonism or costimulatory activity. In cynomolgus monkeys, the anti-CD28 dAb demonstrated pharmacodynamic activity, as measured by the inhibition of a T cell–dependent Ab response, without evidence of T cell depletion or cytokine release. Furthermore, there was a strong correlation between systemic exposure, duration, and extent of CD28 receptor occupancy, and pharmacodynamic activity. Taken together, these data support clinical evaluation of this novel anti-CD28 dAb for the treatment of autoimmune diseases.


Bioanalysis | 2013

Dual universal peptide approach to bioanalysis of human monoclonal antibody protein drug candidates in animal studies

Michael T. Furlong; Song Zhao; William Mylott; Rand Jenkins; Mian Gao; Vendana Hegde; James Tamura; Adrienne A. Tymiak; Mohammed Jemal

BACKGROUND There is a need for general and reliable LC-MS assays capable of supporting the bioanalysis of a variety of human monoclonal antibody-based therapeutic drug candidates in animal PK/TK studies. RESULTS We present herein improvements in our previously reported universal peptide approach to the bioanalysis of human monoclonal antibody protein drug candidates in animal studies. These improvements include incorporation of a second, light chain-based universal peptide into the assay, thus introducing the concept of a dual universal peptide assay; and incorporation of a universal stable isotope-labeled monoclonal antibody into the assay. CONCLUSION Improvements reported herein to the universal peptide assay will enable more reliable quantification of human monoclonal antibody protein drug candidates in animal studies.


Journal of Medicinal Chemistry | 2010

Discovery of 6-(Aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamides as Potent, Selective Dipeptidyl Peptidase-4 (DPP4) Inhibitors.

Wei Meng; Robert Paul Brigance; Hannguang J. Chao; Aberra Fura; Thomas Harrity; Jovita Marcinkeviciene; Stephen P. O'connor; James Tamura; Dianlin Xie; Yaqun Zhang; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Huji Turdi; Aiying Wang; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann

Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.


Archives of Biochemistry and Biophysics | 2008

Differential activation of recombinant human acetyl-CoA carboxylases 1 and 2 by citrate

Gregory A. Locke; Dong Cheng; Mark R. Witmer; James Tamura; Tasir S. Haque; Robert F. Carney; Alan R. Rendina; Jovita Marcinkeviciene

The role of citrate as a physiological modulator of mammalian acetyl-CoA carboxylases (ACCs) has been well studied; however, the mechanism has not been clearly defined. In the current study, we found that citrate activated recombinant human ACC2 by more than approximately 1000-fold, but activated recombinant human ACC1 only by approximately 4-fold. The data fit best to a model which accounts for cooperative binding of two citrate molecules. Citrate activates ACCs at lower concentrations and inhibits at higher concentrations with apparent K(d) values of 0.8+/-0.3 and 3.4+/-0.6 mM, and apparent K(i) values of 20+/-8 and 38 +/-8 mM for ACC1 and ACC2, respectively. In the absence of added citrate, both ACC1 and ACC2 were inactivated by avidin rapidly and completely. Addition of 10 mM citrate protected ACC2 from avidin inactivation; however, protection by citrate was less pronounced for ACC1. In response to citrate treatment, different aggregation patterns for the two isoforms were also observed by dynamic light scattering. Although formation of aggregates by both isoforms was sensitive to citrate, with Mg2+ and Mg-citrate addition only formation of the ACC2 aggregates showed a dependence on citrate concentration. Mass spectrometry data indicated phosphorylation of Ser79 of ACC1 (a serine known to regulate activity), and the corresponding Ser221 of ACC2. Taken together, these data suggest that recombinant human ACC1 and ACC2 are differentially activated by citrate, most likely through conformational changes leading to aggregation, with ACC2 being more sensitive to this activator.


Journal of Medicinal Chemistry | 2015

Discovery of Novel P1 Groups for Coagulation Factor VIIa Inhibition Using Fragment-Based Screening

Daniel L. Cheney; Jeffrey M. Bozarth; William J. Metzler; Paul E. Morin; Luciano Mueller; John A. Newitt; Alexandra H. Nirschl; Alan R. Rendina; James Tamura; Anzhi Wei; Xiao Wen; Nicholas R. Wurtz; Dietmar A. Seiffert; Ruth R. Wexler; E. Scott Priestley

A multidisciplinary, fragment-based screening approach involving protein ensemble docking and biochemical and NMR assays is described. This approach led to the discovery of several structurally diverse, neutral surrogates for cationic factor VIIa P1 groups, which are generally associated with poor pharmacokinetic (PK) properties. Among the novel factor VIIa inhibitory fragments identified were aryl halides, lactams, and heterocycles. Crystallographic structures for several bound fragments were obtained, leading to the successful design of a potent factor VIIa inhibitor with a neutral lactam P1 and improved permeability.


Journal of Molecular Biology | 2016

Functional Antagonism of Human CD40 Achieved by Targeting a Unique Species-Specific Epitope.

Aaron P. Yamniuk; Anish Suri; Stanley R. Krystek; James Tamura; Vidhyashankar Ramamurthy; Robert Kuhn; Karen Carroll; Catherine A. Fleener; Rolf Ryseck; Lin Cheng; Yongmi An; Philip Drew; Steven Grant; Suzanne J. Suchard; Steven G. Nadler; James W. Bryson; Steven Sheriff

Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications.


Rapid Communications in Mass Spectrometry | 2009

Characterization of S‐thiolation on secreted proteins from E. coli by mass spectrometry

Peiran Liu; Malloree A. Tarnowski; Brian W. O'Mara; Wei Wu; Haiying Zhang; James Tamura; Michael S. Ackerman; Li Tao; Michael J. Grace; Reb Russell

S-thiolation is a reversible post-translational modification in which thiol metabolites of low molecular masses are linked to protein sulfhydryl groups through disulfide bonds. This modification is commonly observed in recombinant proteins secreted from E. coli cells. Since it can alter protein functions and introduce molecular heterogeneity, S-thiolation is undesirable for recombinant protein production. To date, few published studies have characterized thiol modifiers or investigated the mechanism of S-thiolation in recombinant proteins. In this work, reversed-phase liquid chromatography and mass spectrometry were used to characterize four of the most abundant thiol modifiers on recombinant proteins secreted from E. coli BL21 (DE3) strain. These thiol modifiers have been identified as glutathione, 4-phosphopantetheine, gluconoylated glutathione, and dephosphorylated coenzyme A. S-thiolation by these thiol modifiers increases protein mass by 305, 356, 483, and 685 Da, respectively. These specific mass increases can be used as markers for identifying S-thiolation in recombinant proteins.

Collaboration


Dive into the James Tamura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Ignatovich

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge