James W. Crane
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by James W. Crane.
European Journal of Neuroscience | 2001
Christopher V. Dayas; Kathryn M. Buller; James W. Crane; Y Xu; Trevor A. Day
It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category‐specific. Data from previous immediate–early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c‐fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c‐fos expression in 25–30% of hypothalamic paraventricular nucleus corticotrophin‐releasing‐factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic–pituitary–adrenal axis. In the amygdala, haemorrhage and immune challenge both elicited c‐fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c‐fos expression in subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as ‘physical’ and ‘psychological’. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.
The FASEB Journal | 2006
Trent M. Woodruff; James W. Crane; Lavinia M. Proctor; Kathryn M. Buller; Annie B. Shek; Kurt J. De Vos; Sandra Pollitt; Hua M. Williams; Ian A. Shiels; Peter N. Monk; Stephen M. Taylor
The complement system is thought to be involved in the pathogenesis of numerous neurological diseases, although its precise role remains controversial. In this study we used orally active C5a receptor antagonists (PMX53 and PMX205) developed in our laboratories in a rat model of 3‐nitropropionic acid (3‐NP) ‐induced Huntingtons disease. Administration of the C5a antagonists (10 mg/kg/day, oral) either 48 h pre‐ or 48 h post‐toxin significantly reduced body weight loss, anorexia, and behavioral and motor deficits associated with 3‐NP intoxication. Striatal lesion size, apoptosis, neutrophil infiltration, and hemorrhage were also significantly reduced in C5a antagonist‐treated rats. Immunohistochemical analysis demonstrated marked deposition of C3 and C9, and upregulation of C5a receptors on neuronal cells at the time of lesion formation. Inhibition of prostaglandins or TNF‐α with ibuprofen or infliximab had no effect in this model. The C5a antagonists did not affect 3‐NP‐induced cell death when added directly to rat striatal neuronal cultures, indicating a secondary mechanism of action in vivo. Our findings demonstrate for the first time that complement activation in the brain, particularly C5a, is a key event in the pathogenesis of this disease model, and suggest a future role for inhibitors of C5a in the treatment of neurodegenerative diseases.—Woodruff, T. M., Crane, J. W., Proctor, L. M., Buller, K. M., Shek, A. B., de Vos, K., Pollitt, S., Williams, H. M., Shiels, I. A., Monk, P. N., Taylor, S. M. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 20, 1407–1417 (2006)
Journal of Immunology | 2008
Trent M. Woodruff; Kerina J. Costantini; James W. Crane; Julie D. Atkin; Peter N. Monk; Stephen M. Taylor; Peter G. Noakes
Complement activation products are elevated in the cerebrospinal fluid and spinal cord of patients with amyotrophic lateral sclerosis (ALS). In this study, we demonstrate complement system involvement in a rodent model of ALS (human SOD1G93A transgenic rats). With end-stage disease, SOD1G93A rats displayed marked deposition of C3/C3b, and a significant up-regulation of the C5aR in the lumbar spinal cord. This was associated with increased numbers of C5aR-positive astrocytes. However, expression of C5L2, the alternative receptor for C5a, was highest on motor neurons early in the disease process. To determine the contribution of C5a to the pathology displayed by this model of ALS, rats were administered an orally active, selective C5aR antagonist (PMX205; 1 mg/kg/day, oral). Animals treated with PMX205 displayed a significant extension of survival time and a reduction in end-stage motor scores, as compared with vehicle-treated rats. PMX205-treated animals also displayed reduced levels of astroglial proliferation in the lumbar spinal cord. This study provides the first demonstration of an involvement of C5a in an ALS model and suggests that inhibitors of complement activation could be beneficial in the treatment of this neurodegenerative disease.
Neuron | 2007
Andrew J. Delaney; James W. Crane; Pankaj Sah
The lateral division of the central amygdala (CeAL) is the target of ascending fibers from the pain-responsive and stress-responsive nuclei in the brainstem. We show that single fiber inputs from the nociceptive pontine parabrachial nucleus onto CeAL neurons form suprathreshold glutamatergic synapses with multiple release sites. Noradrenaline, acting at presynaptic alpha2 receptors, potently inhibits this synapse. This inhibition results from a decrease in the number of active release sites with no change in release probability. Introduction of a presynaptic scavenger of Gbetagamma subunits blocked the effects of noradrenaline, and botulinum toxin A reduced its effects, showing a direct action of betagamma subunits on the release machinery. These data illustrate a mechanism of presynaptic modulation where the output of a large multiple-release-site synapse is potently regulated by endogenously released noradrenaline and suggests that the CeA may be a target for the central nociceptive actions of noradrenaline.
The Journal of Neuroscience | 2008
E. S. Louise Faber; Andrew J. Delaney; John M. Power; Petra L. Sedlak; James W. Crane; Pankaj Sah
Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of β adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they limit synaptic transmission and plasticity. Here, we show that β adrenoceptor activation regulates synaptic SK channels in lateral amygdala pyramidal neurons, through activation of protein kinase A. We show that SK channels are constitutively recycled from the postsynaptic membrane and that activation of β adrenoceptors removes SK channels from excitatory synapses. This results in enhanced synaptic transmission and plasticity. Our findings demonstrate a novel mechanism by which β adrenoceptors control synaptic transmission and plasticity, through regulation of SK channel trafficking, and suggest that modulation of synaptic SK channels may contribute to β adrenoceptor-mediated potentiation of emotional memories.
The Journal of Comparative Neurology | 2003
James W. Crane; Kathryn M. Buller; Trevor A. Day
Systemic infection activates the hypothalamic‐pituitary‐adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin‐1β (IL‐1β, 1 μg/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL‐1β‐induced increases in Fos immunoreactivity in corticotropin‐releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL‐1β‐induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL‐1β administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL‐1β could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL‐1β. J. Comp. Neurol. 467:232–242, 2003.
Stress | 2005
James W. Crane; Kathryn R. French; Kathryn M. Buller
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint-induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation (as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint (e.g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
European Journal of Neuroscience | 2003
James W. Crane; K. Ebner; Trevor A. Day
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic–pituitary–adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin‐releasing factor cells at the apex of the hypothalamic–pituitary–adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin‐1β. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic–pituitary–adrenal axis responses to systemic interleukin‐1β, we next mapped the effects of similar lesions on interleukin‐1β‐induced Fos expression in regions previously shown to regulate the hypothalamic–pituitary–adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos‐positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis‐projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin‐1β, an outcome that is difficult to reconcile with a simple medial prefrontal cortex–bed nucleus of the stria terminalis–corticotropin‐releasing factor cell control circuit.
Brain Research | 2007
James W. Crane; Keiko Shimizu; Gonzalo A. Carrasco; Francisca Garcia; Cuihong Jia; Nicole R. Sullivan; Deborah N. D'Souza; Yahong Zhang; Louis D. Van de Kar; Nancy A. Muma; George Battaglia
Brain serotonin 1A (5-HT1A) receptors play an important role in mood disorders and can modulate various intracellular signaling mechanisms. We previously reported that systemic administration of either full or partial 5-HT1A agonists increases neuroendocrine responses and that tandospirone, an azapirone partial agonist, can activate (phosphorylate) extracellular signal-regulated kinase (ERK) in the hypothalamic paraventricular nucleus (PVN). In contrast, decreased levels of phosphoERK (pERK) have been reported in hippocampus following in vivo administration of either azapirone or aminotetralin 5-HT1A agonists, such as 8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT). The present study investigated the time-dependent activation of MAP kinase in hypothalamus by (+)8-OH-DPAT to determine the regional differences and receptor specificity of the changes in pERK. Adult male rats received a systemic injection of (+)8-OH-DPAT (200 microg/kg, s.c.). The time-dependent changes in ERK activation were examined in hypothalamic nuclei as well as other brain regions associated with modulation of mood. (+)8-OH-DPAT produced a rapid increase (at 5 min) and transient return (at 15 min) of pERK levels in PVN and medial basal hypothalamus. In contrast, pERK levels in hippocampus were reduced at both 5 and 15 min after (+)8-OH-DPAT. Pretreatment with the 5-HT1A receptor-specific antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide (WAY100635) completely blocked the (+)8-OH-DPAT-mediated changes in pERK levels in PVN, medial basal hypothalamus, and hippocampus. No significant (+)8-OH-DPAT-induced changes in pERK were observed in dorsal raphe or amygdala. In conclusion, these results demonstrate that 8-OH-DPAT activation of MAP kinase signaling in vivo is a transient and region-specific phenomenon and in rat hypothalamus and hippocampus is mediated by 5-HT1A receptors.
Neuroscience Letters | 2007
James W. Crane; Kathryn M. Buller
The complement anaphylatoxin C5a is a potent mediator of the innate immune response to infection. Recent evidence also reveals that C5a contributes to central nervous system effects in addition to its well-known peripheral functions. However, it is not known if C5a has a role in the activation of the hypothalamic-pituitary-adrenal (HPA) axis; a critical cascade that exemplifies neuroimmune interactions between the periphery and the brain. In the present study we examined if systemic pre-treatment with a C5a receptor antagonist, PMX53, can affect lipopolysaccharide-induced (LPS; 1 mg/kg, i.p.) activation of the HPA axis in the rat. Using Fos protein as a marker of neuronal activation, we found that systemic administration of PMX53 reduced the LPS-induced activation of paraventricular corticotropin-releasing factor (PVN CRF) and central amygdala cells. However, PMX53 did not alter LPS-induced responses in the bed nucleus of the stria terminalis, nucleus tractus solitarius and ventrolateral medulla. Our findings demonstrate that C5a may have a role in the activation of the HPA axis in response to systemic LPS.