Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James W. Kijas is active.

Publication


Featured researches published by James W. Kijas.


PLOS Biology | 2012

Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

James W. Kijas; Johannes A. Lenstra; Ben J. Hayes; Simon Boitard; Laercio R. Porto Neto; Magali San Cristobal; Bertrand Servin; Russell McCulloch; Vicki Whan; Kimberly Gietzen; Samuel Rezende Paiva; W. Barendse; E. Ciani; Herman W. Raadsma; J. C. McEwan; Brian P. Dalrymple

Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size.


Nature Biotechnology | 2013

Sequencing and automated whole-genome optical mapping of the genome of a domestic goat ( Capra hircus )

Yang Dong; Min Xie; Yu Jiang; Nianqing Xiao; Xiaoyong Du; Wenguang Zhang; Gwenola Tosser-Klopp; Jinhuan Wang; Shuang Yang; Jie Liang; Wenbin Chen; Jing Chen; Peng Zeng; Yong Hou; Chao Bian; Shengkai Pan; Yuxiang Li; Xin Liu; Wenliang Wang; Bertrand Servin; Brian L Sayre; Bin Zhu; Deacon Sweeney; Rich Moore; Wenhui Nie; Yong-Yi Shen; Ruoping Zhao; Guojie Zhang; Jinquan Li; Thomas Faraut

We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.


PLOS ONE | 2009

A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

James W. Kijas; David Townley; Brian P. Dalrymple; Michael P. Heaton; J. F. Maddox; Annette McGrath; Peter Wilson; Roxann G. Ingersoll; Russell McCulloch; Sean McWilliam; Dave Tang; J. C. McEwan; Noelle E. Cockett; V. Hutton Oddy; Frank W. Nicholas; Herman W. Raadsma

The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.


Science | 2014

The sheep genome illuminates biology of the rumen and lipid metabolism

Yu Jiang; Min Xie; Wenbin Chen; Richard Talbot; J. F. Maddox; Thomas Faraut; Chunhua Wu; Donna M. Muzny; Yuxiang Li; Wenguang Zhang; Jo-Ann L. Stanton; Rudiger Brauning; Wesley C. Barris; Thibaut Hourlier; Bronwen Aken; Stephen M. J. Searle; David L. Adelson; Chao Bian; Graham R. Cam; Yulin Chen; Shifeng Cheng; Udaya DeSilva; Karen Dixen; Yang Dong; Guangyi Fan; Ian R. Franklin; Shaoyin Fu; Pablo Fuentes-Utrilla; Rui Guan; Margaret A. Highland

A genome for ewe and ewe Sheep-specific genetic changes underlie differences in lipid metabolism between sheep and other mammals, and may have contributed to the production of wool. Jiang et al. sequenced the genome of two Texel sheep, a breed that produces high-value meat, milk, and wool. The genome information will provide an important resource for livestock production and aid in the understanding of mammalian evolution. Science, this issue p. 1168 A genomic analysis of sheep explains specializations in digestive system physiology and wool production. Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa.

James W. Kijas; Artur V. Cideciyan; Tomas S. Aleman; Michael J. Pianta; Susan E. Pearce-Kelling; Brian J. Miller; Samuel G. Jacobson; Gustavo D. Aguirre; Gregory M. Acland

Rhodopsin is the G protein-coupled receptor that is activated by light and initiates the transduction cascade leading to night (rod) vision. Naturally occurring pathogenic rhodopsin (RHO) mutations have been previously identified only in humans and are a common cause of dominantly inherited blindness from retinal degeneration. We identified English Mastiff dogs with a naturally occurring dominant retinal degeneration and determined the cause to be a point mutation in the RHO gene (Thr4Arg). Dogs with this mutant allele manifest a retinal phenotype that closely mimics that in humans with RHO mutations. The phenotypic features shared by dog and man include a dramatically slowed time course of recovery of rod photoreceptor function after light exposure and a distinctive topographic pattern to the retinal degeneration. The canine disease offers opportunities to explore the basis of prolonged photoreceptor recovery after light in RHO mutations and determine whether there are links between the dysfunction and apoptotic retinal cell death. The RHO mutant dog also becomes the large animal needed for preclinical trials of therapies for a major subset of human retinopathies.


Molecular Ecology | 2011

Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population

Susan E. Johnston; J. C. McEwan; Natalie K. Pickering; James W. Kijas; Dario Beraldi; Jill G. Pilkington; Josephine M. Pemberton; Jon Slate

Understanding the genetic architecture of phenotypic variation in natural populations is a fundamental goal of evolutionary genetics. Wild Soay sheep (Ovis aries) have an inherited polymorphism for horn morphology in both sexes, controlled by a single autosomal locus, Horns. The majority of males have large normal horns, but a small number have vestigial, deformed horns, known as scurs; females have either normal horns, scurs or no horns (polled). Given that scurred males and polled females have reduced fitness within each sex, it is counterintuitive that the polymorphism persists within the population. Therefore, identifying the genetic basis of horn type will provide a vital foundation for understanding why the different morphs are maintained in the face of natural selection. We conducted a genome‐wide association study using ∼36 000 single nucleotide polymorphisms (SNPs) and determined the main candidate for Horns as RXFP2, an autosomal gene with a known involvement in determining primary sex characters in humans and mice. Evidence from additional SNPs in and around RXFP2 supports a new model of horn‐type inheritance in Soay sheep, and for the first time, sheep with the same horn phenotype but different underlying genotypes can be identified. In addition, RXFP2 was shown to be an additive quantitative trait locus (QTL) for horn size in normal‐horned males, accounting for up to 76% of additive genetic variation in this trait. This finding contrasts markedly from genome‐wide association studies of quantitative traits in humans and some model species, where it is often observed that mapped loci only explain a modest proportion of the overall genetic variation.


Genetics | 2006

Five Ovine Mitochondrial Lineages Identified From Sheep Breeds of the Near East

Jennifer Rs S. Meadows; İbrahim Cemal; Orhan Karaca; Elisha Gootwine; James W. Kijas

Archaeozoological evidence indicates that sheep were first domesticated in the Fertile Crescent. To search for DNA sequence diversity arising from previously undetected domestication events, this survey examined nine breeds of sheep from modern-day Turkey and Israel. A total of 2027 bp of mitochondrial DNA (mtDNA) sequence from 197 sheep revealed a total of 85 haplotypes and a high level of genetic diversity. Six individuals carried three haplotypes, which clustered separately from the known ovine mtDNA lineages A, B, and C. Analysis of genetic distance, mismatch distribution, and comparisons with wild sheep confirmed that these represent two additional mtDNA lineages denoted D and E. The two haplogroup E sequences were found to link the previously identified groups A and C. The single haplogroup D sequence branched with the eastern mouflon (Ovis orientalis), urial (O. vignei), and argali (O. ammon) sheep. High sequence diversity (K = 1.86%, haplogroup D and O. orientalis) indicates that the wild progenitor of this domestic lineage remains unresolved. The identification in this study of evidence for additional domestication events adds to the emerging view that sheep were recruited from wild populations multiple times in the same way as for other livestock species such as goat, cattle, and pig.


Genome Biology | 2015

Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project

Leif Andersson; Alan Archibald; C. D. K. Bottema; Rudiger Brauning; Shane C. Burgess; Dave Burt; E. Casas; Hans H. Cheng; Laura Clarke; Christine Couldrey; Brian P. Dalrymple; Christine G. Elsik; Sylvain Foissac; Elisabetta Giuffra; M.A.M. Groenen; Ben J. Hayes; LuSheng S Huang; Hassan Khatib; James W. Kijas; Heebal Kim; Joan K. Lunney; Fiona M. McCarthy; J. C. McEwan; Stephen S. Moore; Bindu Nanduri; Cedric Notredame; Yniv Palti; Graham Plastow; James M. Reecy; G. A. Rohrer

We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.


Animal Genetics | 2012

Accuracy of genotype imputation in sheep breeds

Ben J. Hayes; P.J. Bowman; Hans D. Daetwyler; James W. Kijas; J. H. J. van der Werf

Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re-sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re-sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of individuals to the reference explained up to 64% of the variation in accuracy of imputation, demonstrating that accuracy of imputation can be increased if sires and other ancestors of the individuals to be imputed are included in the reference population. The accuracy of imputation could also be increased if pedigree information was available and was used in tracking inheritance of large chromosome segments within families. In our study, we only considered methods of imputation based on population-wide linkage disequilibrium (largely because the pedigree for some of the populations was incomplete). Finally, in the scenarios designed to mimic imputation of high density or whole genome re-sequence data from the 50K panel, the accuracy of imputation was much higher (86-96%). This is promising, suggesting that in silico genome re-sequencing is possible in sheep if a suitable pool of key ancestors is sequenced for each breed.


Molecular Ecology Resources | 2011

A genome-wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep

Joshua M. Miller; Jocelyn Poissant; James W. Kijas; David W. Coltman

The development of genomic resources for wild species is still in its infancy. However, cross‐species utilization of technologies developed for their domestic counterparts has the potential to unlock the genomes of organisms that currently lack genomic resources. Here, we apply the OvineSNP50 BeadChip, developed for domestic sheep, to two related wild ungulate species: the bighorn sheep (Ovis canadensis) and the thinhorn sheep (Ovis dalli). Over 95% of the domestic sheep markers were successfully genotyped in a sample of fifty‐two bighorn sheep while over 90% were genotyped in two thinhorn sheep. Pooling the results from both species identified 868 single‐nucleotide polymorphisms (SNPs), 570 were detected in bighorn sheep, while 330 SNPs were identified in thinhorn sheep. The total panel of SNPs was able to discriminate between the two species, assign population of origin for bighorn sheep and detect known relationship classes within one population of bighorn sheep. Using an informative subset of these SNPs (n = 308), we examined the extent of genome‐wide linkage disequilibrium (LD) within one population of bighorn sheep and found that high levels of LD persist over 4 Mb.

Collaboration


Dive into the James W. Kijas's collaboration.

Top Co-Authors

Avatar

Brian P. Dalrymple

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Sean McWilliam

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell McCulloch

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laercio R. Porto-Neto

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Antonio Reverter

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

J. F. Maddox

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Michael P. Heaton

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge