Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James W. Yockman is active.

Publication


Featured researches published by James W. Yockman.


Journal of Controlled Release | 2009

L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL)

Young Min Kwon; Hee Sun Chung; Cheol Moon; James W. Yockman; Yoon Jeong Park; Scott D. Gitlin; Allan E. David; Victor C. Yang

As a primary drug for the treatment of acute lymphoblastic leukemia (ALL), encapsulation of L-asparaginase (ASNase) into red blood cells (RBC) has been popular to circumvent immunogenicity from the exogenous protein. Unlike existing methods that perturbs RBC membranes, we introduce a novel method of RBC-incorporation of proteins using the membrane-translocating low molecular weight protamine (LMWP). Confocal study of fluorescence-labeled LMWP-ovalbumin, as a model protein conjugate, has shown significant fluorescence inside RBCs. Surface morphology by scanning electron microscopy of the RBCs loaded with LMWP-ASNase was indistinguishable with normal RBCs. These drug loaded RBCs also closely resembled the profile of the native erythrocytes in terms of osmotic fragility, oxygen dissociation and hematological parameters. The in vivo half-life of enzyme activity after administering 8 units of RBC/LMWP-ASNase in DBA/2 mice was prolonged to 4.5+/-0.5 days whereas that of RBCs loaded with ASNase via a hypotonic method was 2.4+/-0.7 days. Furthermore, the mean survival time of DBA/2 mice bearing mouse lymphoma cell L5178Y was improved by approximately 44% compared to the saline control group after treatment with the RBC loaded enzymes. From these data, an innovative, novel method for encapsulating proteins into intact and fully functional erythrocytes was established for potential treatment of ALL.


Biomaterials | 2010

The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy

Pyung Hwan Kim; Tae il Kim; James W. Yockman; Sung Wan Kim; Chae-Ok Yun

Adenoviral vectors offer many advantages for cancer gene therapy, including high transduction efficiency, but safety concerns related to severe immunogenicity and other side effects have led to careful reconsideration of their use in human clinical trials. To overcome these issues, a strategy of generating hybrid vectors that combine viral and non-viral elements as more intelligent gene carriers has been employed. Here, we coated adenovirus (Ad) with an arginine-grafted bioreducible polymer (ABP) via electrostatic interaction. We examined the effect of ABP-coated Ad complex at various ABP molecules/Ad particle ratios. Enhanced transduction efficiency was observed in cells treated with cationic ABP polymer-coated Ad complex compared to naked Ad. We also examined the coating of Ad with ABP polymers at the optimal polymer ratio using dynamic light scattering and transmission electron microscopy. In both high and low coxsackie virus and adenovirus receptor (CAR)-expressing cells, ABP-coated Ad complex produced higher levels of transgene expression than cationic polymer 25K PEI. Notably, high cytotoxicity was observed with 25K PEI-coated Ad complex treatment, but not with ABP-coated Ad complex treatment. In addition, ABP-coated Ad complex was not significantly inhibited by serum, in contrast to naked Ad. Moreover, ABP-coated Ad complex significantly reduced the innate immune response relative to naked Ad, as assessed by interleukin-6 (IL-6) cytokine release from macrophage cells. Overall, our studies demonstrate that Ad complex formed with ABP cationic polymer may improve the efficiency of Ad and be a promising tool for cancer gene therapy.


Gene Therapy | 2009

Polymeric gene delivery of ischemia-inducible VEGF significantly attenuates infarct size and apoptosis following myocardial infarct

James W. Yockman; Donghoon Choi; Matthew G. Whitten; Chien-Wen Chang; Andrew Kastenmeier; Harold M. Erickson; Aida Albanil; Minhyung Lee; Sung Wan Kim; David A. Bull

The development of clinically beneficial myocardial gene therapy has been slowed by reliance on the use of viral carriers and non-physiologic, constitutive gene expression. To specifically address these issues, we have developed a non-viral gene carrier, water-soluble lipopolymer (WSLP), and an ischemia-inducible plasmid construct expressing vascular endothelial growth factor (VEGF), pRTP801-VEGF, to treat myocardial ischemia and infarction. Rabbits underwent ligation of the circumflex artery followed by injection of (a) an ischemia-inducible VEGF gene construct in a WSLP carrier; (b) a constitutively expressed, or unregulated, SV-VEGF gene construct in a WSLP carrier; (c) WSLP carrier alone; or (d) no injection therapy. Following 4 weeks treatment, ligation alone resulted in infarction of 48±7% of the left ventricle. With injection of WSLP carrier alone, 49±6% of the left ventricle was infarcted (P=NS). The constitutively expressed gene construct, SV-VEGF, reduced the infarct size to 32±7% of the left ventricle (P=0.007). The ischemia-inducible gene construct, RTP801-VEGF, further reduced the infarct size to 13±4% of the left ventricle (P<0.001). The use of a non-viral carrier to deliver an ischemia-inducible VEGF construct is effective in the treatment of acutely ischemic myocardium.


Biomaterials | 2011

Cell penetrating peptide conjugated bioreducible polymer for siRNA delivery.

Hye Yeong Nam; Jaesung Kim; Soo Jin Kim; James W. Yockman; Sung Wan Kim; David A. Bull

The primary cardiomyocyte-specific peptide (PCM) and the cell-penetrating peptide (CPP), HIV-Tat (49-57), were incorporated into the polymer, cystamine bisacrylamide-diaminohexane (CBA-DAH), to increase the delivery of RNAi to target cells, specifically cardiomyocytes. Interestingly, the impact of PCM and Tat conjugation on cellular uptake and transfection efficiency was greater in H9C2 rat cardiomyocytes than in NIH 3T3 cells. We examined the potential for siRNA targeting SHP-1 or Fas to inhibit the apoptosis of cardiomyocytes under hypoxic conditions using PCM and Tat-modified poly(CBA-DAH), (PCM-CD-Tat). To evaluate for efficacy in inhibiting apoptosis, either Fas siRNA/polymer or SHP-1 siRNA/polymer were transfected into cardiomyocytes treated under hypoxic and serum-deprived conditions. After incubation under hypoxic conditions, treatment with either the SHP-1 siRNA complex or the Fas siRNA complex resulted in an increase in cell viability and a reduction in LDH-cytotoxicity. The cells transfected with either of the siRNA polyplexes had a lower incidence of apoptosis as demonstrated by Annexin V-FITC/PI staining. Both the SHP-1 siRNA/PCM-CD-Tat complex and the Fas siRNA/PCM-CD-Tat complex warrant further investigation as therapeutic agents to inhibit the apoptosis of cardiomyocytes.


Journal of Controlled Release | 2008

Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction

James W. Yockman; Andrew Kastenmeier; Harold M. Erickson; Jonathan G. Brumbach; Matthew G. Whitten; Aida Albanil; Dean Y. Li; Sung Wan Kim; David A. Bull

The number one cause of mortality in the US is cardiovascular related disease. Future predictions do not see a reduction in this rate especially with the continued rise in obesity [P. Poirier, et al., Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss, Arterioscler Thromb Vasc Biol. 26(5), (2006) 968-976.; K. Obunai, S. Jani, G.D. Dangas, Cardiovascular morbidity and mortality of the metabolic syndrome, Med.Clin. North Am., 91(6), (2007) 1169-1184]. Even so, potential molecular therapeutic targets for cardiac gene delivery are in no short supply thanks to continuing advances in molecular cardiology. However, efficient and safe delivery remains a bottleneck in clinical gene therapy [O.J. Muller, H.A. Katus, R. Bekeredjian, Targeting the heart with gene therapy-optimized gene delivery methods, Cardiovasc Res, 73(3), (2007) 453-462]. Viral vectors are looked upon favorably for their high transduction efficiency, although their ability to elicit toxic immune responses remains [C.F. McTiernan, et al., Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts, Gene Ther, 14(23), (2007) 1613-1622]. However, this high transduction does not necessarily translate into improved efficacy [X. Hao, et al., Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model, Cardiovasc Res., 73(3), (2007) 481-487]. Naked DNA remains the preferred method of DNA delivery to cardiac myocardium and has been explored extensively in clinical trials. The results from these trials have demonstrated efficacy in regard to secondary end-points of reduced symptomatology and perfusion, but have failed to establish significant angiogenesis or an increase in myocardial function [P.B. Shah, D.W. Losordo, Non-viral vectors for gene therapy: clinical trials in cardiovascular disease, Adv Genet, 54, (2005) 339-361]. This may be due in part to reduced transfection efficiency but can also be attributed to use of suboptimal candidate genes. Currently, polymeric non-viral gene delivery to cardiac myocardium remains underrepresented. In the past decade several advances in non-viral vector development has demonstrated increased transfection efficiency [O.J. Muller, H.A. Katus, R. Bekeredjian, Targeting the heart with gene therapy-optimized gene delivery methods, Cardiovasc Res, 73(3), (2007) 453-462]. Of these polymers, those that employ lipid modifications to improve transfection or target cardiovascular tissues have proven themselves to be extremely beneficial. Water-soluble lipopolymer (WSLP) consists of a low molecular weight branched PEI (1800) and cholesterol. The cholesterol moiety adds extra condensation by forming stable micellular complexes and was later employed for myocardial gene therapy to exploit the high expression of lipoprotein lipase found within cardiac tissue. Use of WSLP to deliver hypoxia-responsive driven expression of hVEGF to ischemic rabbit myocardium has proven to provide for even better expression in cardiovascular cells than Terplex and has demonstrated a significant reduction in infarct size (13+/-4%, p<0.001) over constitutive VEGF expression (32+/-7%, p=0.007) and sham-injected controls (48+/-7%). A significant reduction in apoptotic values and an increase in capillary growth were also seen in surrounding tissue. Recently, investigations have begun using bioreducible polymers made of poly(amido polyethylenimines) (SS-PAEI). SS-PAEIs breakdown within the cytoplasm through inherent redox mechanisms and provide for high transfection efficiencies (upwards to 60% in cardiovascular cell types) with little to no demonstrable toxicity. In vivo transfections in normoxic and hypoxic rabbit myocardium have proven to exceed those results of WSLP transfections by 2-5 fold [L.V. Christensen, et al., Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery, J Control Release, 118(2), (2007) 254-261]. This new breed of polymer(s) may allow for decreased doses and use of new molecular mechanisms not previously available due to low transfection efficiencies. Little development has been seen in the use of new gene agents for treatment of myocardial ischemia and infarction. Current treatment consists of using mitogenic factors, described decades earlier, alone or in combination to spur angiogenesis or modulating intracellular Ca2+ homeostasis through SERCA2a but to date, failed to demonstrate clinical efficacy. Recent data suggests that axonal guidance cues also act on vasculature neo-genesis and provide a new means of investigation for treatment.


Biomaterials | 2008

Cardiomyocyte-targeted siRNA delivery by prostaglandin E2-Fas siRNA polyplexes formulated with reducible poly(amido amine) for preventing cardiomyocyte apoptosis

Sun Hwa Kim; Ji Hoon Jeong; Mei Ou; James W. Yockman; Sung Wan Kim; David A. Bull

A cardiomyocyte-targeted Fas siRNA delivery system was developed using prostaglandin E(2) (PGE(2))-modified siRNA polyplexes formed by a reducible poly(amido amine) to inhibit cardiomyocyte apoptosis. PGE(2), which was used as a specific ligand for cardiomyocyte targeting, was conjugated to the terminal-end of the sense siRNA (PGE(2)-siRNA). The reducible cationic copolymer, synthesized via Michael-type polyaddition of 1,6-diaminohexane and cystamine bis-acrylamide (poly(DAH/CBA)), tightly condensed the PGE(2)-siRNA conjugate to form nanosize polyplexes having a diameter of 100-150 nm. The PGE(2)-siRNA/poly(DAH/CBA) polyplexes decomplexed to release PGE(2)-siRNA in a cytosolic reducing environment due to the degradation of the reducible poly(DAH/CBA). The cellular uptake of the PGE(2)-siRNA/poly(DAH/CBA) polyplex was increased in rat cardiomyocytes (H9C2 cells) due to PGE(2) receptor-mediated endocytosis. When H9C2 cells were transfected with siRNA against Fas, a key regulator of ischemia-induced apoptosis, the PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex delivery system led to a significant increase in Fas gene silencing, resulting in inhibition of cardiomyocyte apoptosis. The PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex did not induce interferon-alpha in peripheral blood mononuclear cells. These results suggest that the PGE(2)-Fas siRNA/poly(DAH/CBA) polyplex formulation may be clinically applicable as a cardiomyocyte-targeted Fas siRNA delivery system to inhibit apoptosis in cardiovascular disease.


Journal of Controlled Release | 2003

Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes.

James W. Yockman; Anurag Maheshwari; Sang Oh Han; Sung Wan Kim

The recruitment of the bodys own immune system is amongst the most potent defenses known against cancer. Recent attempts to harness this response have enlisted the use of the immune modulating cytokine, interleukin-12 (IL-12). The objective of this work is to investigate the organ distribution and anti-tumor response in vivo after intratumoral administration of IL-12 expression plasmid complexed with water soluble lipopolymer (WSLP). Formulations of WSLP/p2CMVmIL-12 at N/P mol ratio of 20:1 were prepared in the presence of 5% (w/v) glucose. Organ distribution data following intratumoral injection of CT-26 subcutaneous tumor-bearing BALB/c mice demonstrated enhanced retention of WSLP/p2CMVmIL-12 complexes within the tumor and limited accumulation in other organs for up to 96 h. Tumor-bearing BALB/c mice received either single or repeated intratumoral injections at 4- or 8-day intervals to examine the efficacy of single versus repeated injections on tumor regression and survival. Significant tumor growth inhibition during 4- and 8-day injection trials was observed with maximal survival in mice receiving 4-day injections of WSLP/p2CMVmIL-12 complexes. In conclusion, the water-soluble non-toxic lipopolymer complexed with p2CMVIL-12 showed enhanced transgene expression in vivo, inhibits the rate of tumor growth, and significantly increases survival.


Pharmaceutical Research | 2007

Intracellular Kinetics of Non-Viral Gene Delivery Using Polyethylenimine Carriers

Jiaye Zhou; James W. Yockman; Sung Wan Kim; Steven E. Kern

Purpose Polymeric nucleic acid carriers are designed to overcome one or more barriers to delivery. High molecular weight polyethylenimine (PEI) shows high transfection efficiency but exhibits high cytotoxicity (Fischer et al. Biomaterials, 24:1121–1131 (2003); Peterson et al. Bioconjug. Chem., 13:845–854 (2002)). Nontoxic water-soluble lipopolymer (WSLP) was previously developed using branched poly(ethylenimine) (PEI, mw 1,800) and cholesteryl chloroformate (Han, Mahato, and Kim. Bioconjug. Chem., 12:337–345 (2001)) and is an effective non-viral gene carrier with transfection levels equal or above high molecular weight PEI with a lower cytotoxicity profile. To understand how differences in these polymeric carriers influence transfection, we studied the pharmacokinetics of polymer gene carriers at the cellular level.Materials and MethodsCells were exposed in vitro to different polymeric carriers and the transport of the carriers into different cellular compartments was determined using cellular fractionation and real-time quantitative PCR. A multi-compartment mathematical model was applied to time series measurements of the trafficking of plasmids across each cellular barrier.Results Our result indicates that the chemical modification of WSLP increased the rate parameter for endosomal escape significantly compared to conventional PEI carriers thereby increasing the overall transfection efficiency.ConclusionsThese results are consistent with the goal of endosomal destabilization of the carrier design. This method provides a quantitative means for assessing different polymer construct designs for gene delivery.


Bioconjugate Chemistry | 2010

Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)- g -poly(ethylene glycol) for improved gene delivery

Jonathan H. Brumbach; C. Lin; James W. Yockman; Won Jong Kim; Katherine S. Blevins; Johan F. J. Engbersen; Jan Feijen; Sung Wan Kim

Branched disulfide-containing poly(amido ethyleneimines) (SS-PAEIs) are biodegradable polymeric gene carrier analogues of the well-studied, nondegradable, and often toxic branched polyethylenimines (bPEIs), but with distinct advantages for cellular transgene delivery. Clinical success of polycationic gene carriers is hampered by obscure design and formulation requirements. This present work reports synthetic and formulation properties for a graft copolymer of poly(ethylene glycol) (PEG) and a branched SS-PAEI, poly(triethylentetramine/cystaminebisacrylamide) (p(TETA/CBA)). Several laboratories have previously demonstrated the advantages of PEG conjugation to gene carriers, but have also shown that PEG conjugation may perturb plasmid DNA (pDNA) condensation, thereby interfering with nanoparticle formation. With this foundation, our studies sought to mix various amounts of p(TETA/CBA) and p(TETA/CBA)-g-PEG2k to alter the relative amount of PEG in each formulation used for polyplex formation. The influence of different PEG/polycation amounts in the formulations on polymer/nucleic acid nanoparticle (polyplex) size, surface charge, morphology, serum stability and transgene delivery was studied. Polyplex formulations were prepared using p(TETA/CBA)-g-PEG2k, p(TETA/CBA), and mixtures of the two species at 10/90 and 50/50 volumetric mixture ratios (wt/wt %), respectively. As expected, increasing the amount of PEG in the formulation adversely affects polyplex formation. However, optimal polymer mixtures could be identified using this facile approach to further clarify design and formulation requirements necessary to understand and optimize carrier stability and biological activity. This work demonstrates the feasibility to easily overcome typical problems observed when polycations are modified and thus avoids the need to synthesize multiple copolymers to identify optimal gene carrier candidates. This approach may be applied to other polycation-PEG preparations to alter polyplex characteristics for optimal stability and biological activity.


Biomaterials | 2011

Bioreducible polymer-transfected skeletal myoblasts for VEGF delivery to acutely ischemic myocardium

Arlo N. McGinn; Hye Yeong Nam; Mei Ou; Norman Hu; Catherine M. Straub; James W. Yockman; David A. Bull; Sung Wan Kim

Implantation of skeletal myoblasts to the heart has been investigated as a means to regenerate and protect the myocardium from damage after myocardial infarction. While several animal studies utilizing skeletal myoblasts have reported positive findings, results from clinical studies have been mixed. In this study we utilize a newly developed bioreducible polymer system to transfect skeletal myoblasts with a plasmid encoding vascular endothelial growth factor (VEGF) prior to implantation into acutely ischemic myocardium. VEGF has been demonstrated to promote revascularization of the myocardium following myocardial infarction. We report that implanting VEGF expressing skeletal myoblasts into acutely ischemic myocardium produces superior results compared to implantation of untransfected skeletal myoblasts. Skeletal myoblasts expressing secreted VEGF were able to restore cardiac function to non-diseased levels as measured by ejection fraction, to limit remodeling of the heart chamber as measured by end systolic and diastolic volumes, and to prevent myocardial wall thinning. Additionally, arteriole and capillary formation, retention of viable cardiomyocytes, and prevention of apoptosis was significantly improved by VEGF expressing skeletal myoblasts compared to untransfected myoblasts. This work demonstrates the feasibility of using bioreducible cationic polymers to create engineered skeletal myoblasts to treat acutely ischemic myocardium.

Collaboration


Dive into the James W. Yockman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won Jong Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge