Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James White is active.

Publication


Featured researches published by James White.


Journal of Tribology-transactions of The Asme | 2007

Air Bearing Slider-Disk Interface for Single-Sided High Speed Recording on a Metal Foil Disk

James White

There are disk-drive data storage applications best served by single-sided recording configurations. These include situations where (i) storage requirements can be achieved on a single side of a disk and (ii) dimensional constraints on the disk drive prohibit the presence of a recording head and its associated mounting device on each side of the disk. Even if dimensional requirements are not a concern, the most cost-effective and operationally efficient slider-disk air-bearing interface for single-sided recording is one that does not include an air-bearing slider, pressure pad, or other air-bearing structure on the nondata side of the disk. A metal foil disk offers some of the best characteristics of both the hard disk and floppy disk for digital data storage. It offers hard disk recording densities, increased shock resistance, reduced manufacturing cost, and requires less operational energy than a hard disk. However, use of a conventional recording head slider assembly without opposing air-bearing support for single-sided recording on a high-speed metal foil disk presents a fundamental problem because the air-bearing surface of the slider produces a net transverse force to the disk. This force causes the disk to deflect and can result in flying height and stability problems at the slider-disk interface. The current work describes an air-bearing interface for low flying height single-sided recording on a high-speed metal foil disk that minimizes disk deflection and instability without the presence of air-bearing components on opposing sides of the disk. The new interface utilizes a vacuum cavity-type air-bearing with little or no preload. Examples will be presented and discussed for the new interface that illustrate the flying characteristics of a picosized slider on a 1.8 in. stainless steel disk with thickness of 25.4 μm.


Journal of Tribology-transactions of The Asme | 2005

Slider Air Bearing Design Enhancements for High Speed Flexible Disk Recording

James White

The current effort was motivated largely by the fact that computing and communication platforms are becoming more portable and mobile with increased demands for both speed and disk storage. This work makes use of an asymmetric opposed slider arrangement to provide both static and dynamic improvements to the recording head air bearing interface for high speed flexible disk applications. The combination of a longitudinally slotted rail opposed by an uninterrupted rail that functions as a noncontact hydrodynamic pressure pad causes the disk to deflect at the submicron level over critical areas of the slider interface. This allows the required static minimum flying height to be focused over the recording transducer while higher clearances are positioned elsewhere, resulting in minimized exposure to contact between slider and disk. The high stiffness and low flying height of the air film at the recording element together with the low stiffness and high flying height of the opposing air film provides a noncontact air bearing interface that is especially immune to mechanical shock. A computer code called FLEXTRAN was developed that provides both static and dynamic numerical solutions of the air bearing interface composed of two opposed gimbal mounted sliders loaded against a high speed flexible disk. Simulations of the asymmetric opposed slider configuration are presented and compared with those of other slider air bearing designs.


Journal of Tribology-transactions of The Asme | 1999

An Averaging Technique for the Analysis of Rough Surface High Bearing Number Gas Flows

James White

Earlier analytical solutions by White (1980, 1983, 1992, 1993) included Couette effects, transverse diffusion, and mass storage in a model lubrication equation for narrow width wavy surface high bearing number gas films. The model lubrication equation did not include longitudinal diffusion effects due to the high bearing number restriction. Crone et al. (1991), however, reported numerical solutions of the full Reynolds equation for a gimbal mounted slider subject to wavy surface roughness. The first objective of this work is to reconcile the differences observed between the reported results of White and those of Crone et al. for moving and stationary roughness. The second objective is to describe how to best apply what appears to be a universal property of a high bearing number gas film subjected to a rough surface. Each solution of the model lubrication equation by White (1980, 1983, 1992, 1993) produced a product term based on local gas pressure and clearance (Z = Ph) that is independent of roughness details but which is dependent on the statistical properties of the roughness. In the present work, this characteristic is treated as a universal property of all high bearing number rough surface gas films. The product variable Z = Ph is introduced into the generalized full lubrication equation, and the resulting lubrication equation is ensemble averaged before a solution is attempted. This removes the short length and time scale effects due to the surface roughness. Solution of the ensemble averaged equation for Z(x, y, t) then follows by standard analytical or numerical methods. The unaveraged pressure is then given by P(x, y, t) = Z(x, y, t)/h(x, y, t) and the ensemble averaged or mean pressure at a point is computed from P m (x, y, t) = Z(x, y, t)E(1/h(x, y, t)), where E(1/h) represents the ensemble average of 1/h. Using this technique, numerical solutions of the full generalized lubrication equation based on kinetic theory were obtained for a low flying gimbal mounted slider. Results indicate that the nominal flying height increases and the minimum flying height decreases as surface roughness increases.


Journal of Tribology-transactions of The Asme | 2006

Design of Optimized Opposed Slider Air Bearings for High-Speed Recording on a Metal Foil Disk

James White

A metal foil disk offers some of the best characteristics of both the hard disk and floppy disk for digital data storage. The current work defines an opposed slider air-bearing arrangement that provides advantages when used with a high-speed metal foil disk in either a fixed or removable format. Use is made of the fact that the opposing sliders interact through their influence on the flexible disk that is sandwiched between them. Asymmetry of opposing air bearings is created by etching the air-bearing pad opposite the recording element pad to a depth sufficient that the flying height and air film stiffness of the opposing pad reach desired levels. The result is an air-bearing interface with low flying height and high stiffness over the recording element directly opposed by a high flying height and low stiffness on the other side of the disk. This air-bearing interface was found to provide an enhanced dynamic flexibility to the metal foil disk when it is subjected to mechanical shock. As a result, the opposed slider arrangement with metal foil disk is able to avoid contact and impact when subjected to substantial levels of mechanical shock. Thus, wear and damage to slider and disk surfaces are reduced as well as the possibility of lost recorded data. This should make the metal foil disk a strong candidate as a rotating storage medium for mobile and portable applications where a shock environment is common. Computer simulation of the new air-bearing configuration will be presented and discussed. The current work is related to but distinct from that reported recently by White (2005, ASME J. Tribol., 127, pp. 522-529) for a Mylar disk.


Journal of Tribology-transactions of The Asme | 2008

Air Bearing Interface Characteristics of Opposed Asymmetric Recording Head Sliders Flying on a 1 in. Titanium Foil Disk

James White

The current effort was motivated by the increasing appearance of data storage devices in small portable and mobile product formats and the need for these devices to deliver high storage capacity, low power requirements, and increased ruggedness. In order to address these requirements, this work considered the storage device to utilize a 1 in. titanium foil disk and a pair of opposed femtosized zero-load recording head sliders with asymmetrically configured air bearing surfaces. A titanium foil disk, due to its reduced thickness and relatively low mass density, requires less operational energy than a hard disk while providing storage densities and data transfer rates typical of a hard disk. The zero-load sliders were chosen in order to make negligible the air bearing interface normal force acting on the disk surface that can lead to high speed disk instability. The asymmetry of the slider air bearing surfaces, together with the disk dynamic flexibility, greatly improves the ability of the slider-disk interface to absorb substantial mechanical shock and other dynamic effects without the associated contact and impact typically observed with a hard disk. The current project evaluated the characteristics of this slider-disk air bearing interface for both static and unsteady operating conditions. Time dependent studies included a numerical simulation of the dynamic load process and the response to mechanical shock. A comparison with the performance of a hard disk interface was also included.


Journal of Tribology-transactions of The Asme | 2010

A Gas Lubrication Equation for High Knudsen Number Flows and Striated Rough Surfaces

James White


Journal of Tribology-transactions of The Asme | 2011

Numerical Solution of the Boltzmann Based Lubrication Equation for the Air-Bearing Interface Between a Skewed Slider and a Disk With Discrete Data Tracks

James White


Journal of Tribology-transactions of The Asme | 2014

Combined Effects of Surface Roughness and Rarefaction in the Region Between High Wave Number-Limited and High Bearing Number-Limited Lubricant Flows

James White


Journal of Tribology-transactions of The Asme | 2014

The Gas Bearing Interface of Opposed Recording Heads in a Disk Drive Utilizing Helium and Thin Titanium Foil Disks

James White


Journal of Tribology-transactions of The Asme | 2010

Surface Roughness Effects on Air Bearing Performance Over a Wide Range of Knudsen and Wave Numbers

James White

Collaboration


Dive into the James White's collaboration.

Researchain Logo
Decentralizing Knowledge