Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie H. Rose is active.

Publication


Featured researches published by Jamie H. Rose.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dopamine transporters govern diurnal variation in extracellular dopamine tone.

Mark J. Ferris; Rodrigo A. España; Jason L. Locke; Joanne K. Konstantopoulos; Jamie H. Rose; Rong Chen; Sara R. Jones

Significance The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe shifts in the function of the dopamine system over time, which may have implications for diurnal effects on dopamine-dependent learning, sleep/wake behavior, locomotor activity, reward, and drug addiction. The majority of neurotransmitter systems shows variations in state-dependent cell firing rates that are mechanistically linked to variations in extracellular levels, or tone, of their respective neurotransmitter. Diurnal variation in dopamine tone has also been demonstrated within the striatum, but this neurotransmitter is unique, in that variation in dopamine tone is likely not related to dopamine cell firing; this is largely because of the observation that midbrain dopamine neurons do not display diurnal fluctuations in firing rates. Therefore, we conducted a systematic investigation of possible mechanisms for the variation in extracellular dopamine tone. Using microdialysis and fast-scan cyclic voltammetry in rats, as well as wild-type and dopamine transporter (DAT) knock-out mice, we demonstrate that dopamine uptake through the DAT and the magnitude of subsecond dopamine release is inversely related to the magnitude of extracellular dopamine tone. We investigated dopamine metabolism, uptake, release, D2 autoreceptor sensitivity, and tyrosine hydroxylase expression and activity as mechanisms for this variation. Using this approach, we have pinpointed the DAT as a critical governor of diurnal variation in extracellular dopamine tone and, as a consequence, influencing the magnitude of electrically stimulated dopamine release. Understanding diurnal variation in dopamine tone is critical for understanding and treating the multitude of psychiatric disorders that originate from perturbations of the dopamine system.


Drug and Alcohol Dependence | 2015

Chronic intermittent ethanol exposure reduces presynaptic dopamine neurotransmission in the mouse nucleus accumbens

Anushree N. Karkhanis; Jamie H. Rose; Kimberly N. Huggins; Joanne K. Konstantopoulos; Sara R. Jones

BACKGROUND Increasing evidence suggests that chronic ethanol exposure decreases dopamine (DA) neurotransmission in the nucleus accumbens (NAc), contributing to a hypodopaminergic state during withdrawal. However, few studies have investigated adaptations in presynaptic DA terminals after chronic intermittent ethanol (CIE) exposure. In monkeys and rats, chronic ethanol exposure paradigms have been shown to increase DA uptake and D2 autoreceptor sensitivity. METHODS The current study examined the effects of ethanol on DA terminals in CIE exposed mice during two time-points after the cessation of CIE exposure. DA release and uptake were measured using fast scan cyclic voltammetry in NAc core slices from C57BL/6J mice, 0h and 72h following three weekly cycles (4 days of 16h ethanol vapor/8h room air/day+3 days withdrawal) of CIE vapor exposure. RESULTS Current results showed that DA release was reduced, uptake rates were increased, and inhibitory D2-type autoreceptor activity was augmented following CIE exposure in mice. CONCLUSIONS Overall, these CIE-induced adaptations in the accumbal DA system reduce DA signaling and therefore reveal several potential mechanisms contributing to a functional hypodopaminergic state during alcohol withdrawal.


The International Journal of Neuropsychopharmacology | 2016

Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens

Jamie H. Rose; Anushree N. Karkhanis; Rong Chen; Dominic Gioia; Marcelo F. Lopez; Howard C. Becker; Brian A. McCool; Sara R. Jones

Background: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Methods: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Results: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. Conclusions: These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.


Science Signaling | 2016

Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria

Tarsis F. Brust; Jenny Morgenweck; Susy A. Kim; Jamie H. Rose; Jason L. Locke; Cullen L. Schmid; Lei Zhou; Edward L. Stahl; Michael D. Cameron; Sarah M. Scarry; Jeffrey Aubé; Sara R. Jones; Thomas J. Martin; Laura M. Bohn

Biased agonists of the kappa opioid receptor may relieve intractable itch without causing unwanted side effects. Itch relief from biased agonists Activating the kappa opioid receptor (KOR) can relieve itching that is not caused by allergic reactions. However, compounds that activate this receptor also cause unwanted side effects, such as dysphoria and sedation. KOR activation can trigger multiple downstream signaling pathways. Brust et al. characterized a biased agonist of this receptor that preferentially activated one downstream pathway over another. This agonist relieved itch in rodents without causing dysphoria or sedation. Thus, biased KOR agonists may provide a long-sought therapeutic option for intractable itch without the unwanted side effects. Agonists targeting the kappa opioid receptor (KOR) have been promising therapeutic candidates because of their efficacy for treating intractable itch and relieving pain. Unlike typical opioid narcotics, KOR agonists do not produce euphoria or lead to respiratory suppression or overdose. However, they do produce dysphoria and sedation, side effects that have precluded their clinical development as therapeutics. KOR signaling can be fine-tuned to preferentially activate certain pathways over others, such that agonists can bias signaling so that the receptor signals through G proteins rather than other effectors such as βarrestin2. We evaluated a newly developed G protein signaling–biased KOR agonist in preclinical models of pain, pruritis, sedation, dopamine regulation, and dysphoria. We found that triazole 1.1 retained the antinociceptive and antipruritic efficacies of a conventional KOR agonist, yet it did not induce sedation or reductions in dopamine release in mice, nor did it produce dysphoria as determined by intracranial self-stimulation in rats. These data demonstrated that biased agonists may be used to segregate physiological responses downstream of the receptor. Moreover, the findings suggest that biased KOR agonists may present a means to treat pain and intractable itch without the side effects of dysphoria and sedation and with reduced abuse potential.


Neuropharmacology | 2015

Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.

Kristen E. Pleil; Emily G. Lowery-Gionta; Nicole A. Crowley; Chia Li; Catherine A. Marcinkiewcz; Jamie H. Rose; Nora M. McCall; Antoniette M. Maldonado-Devincci; A. Leslie Morrow; Sara R. Jones; Thomas L. Kash

Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.


Neuropsychopharmacology | 2016

Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System.

Anushree N. Karkhanis; Jamie H. Rose; Jeffrey L. Weiner; Sara R. Jones

Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.


PLOS ONE | 2013

Greater ethanol-induced locomotor activation in DBA/2J versus C57BL/6J mice is not predicted by presynaptic striatal dopamine dynamics.

Jamie H. Rose; Erin S. Calipari; Tiffany A. Mathews; Sara R. Jones

A large body of research has aimed to determine the neurochemical factors driving differential sensitivity to ethanol between individuals in an attempt to find predictors of ethanol abuse vulnerability. Here we find that the locomotor activating effects of ethanol are markedly greater in DBA/2J compared to C57BL/6J mice, although it is unclear as to what neurochemical differences between strains mediate this behavior. Dopamine elevations in the nucleus accumbens and caudate-putamen regulate locomotor behavior for most drugs, including ethanol; thus, we aimed to determine if differences in these regions predict strain differences in ethanol-induced locomotor activity. Previous studies suggest that ethanol interacts with the dopamine transporter, potentially mediating its locomotor activating effects; however, we found that ethanol had no effects on dopamine uptake in either strain. Ex vivo voltammetry allows for the determination of ethanol effects on presynaptic dopamine terminals, independent of drug-induced changes in firing rates of afferent inputs from either dopamine neurons or other neurotransmitter systems. However, differences in striatal dopamine dynamics did not predict the locomotor-activating effects of ethanol, since the inhibitory effects of ethanol on dopamine release were similar between strains. There were differences in presynaptic dopamine function between strains, with faster dopamine clearance in the caudate-putamen of DBA/2J mice; however, it is unclear how this difference relates to locomotor behavior. Because of the role of the dopamine system in reinforcement and reward learning, differences in dopamine signaling between the strains could have implications for addiction-related behaviors that extend beyond ethanol effects in the striatum.


Neuropsychopharmacology | 2015

A Single Amphetamine Infusion Reverses Deficits in Dopamine Nerve-Terminal Function Caused by a History of Cocaine Self-Administration

Mark J. Ferris; Erin S. Calipari; Jamie H. Rose; Cody A. Siciliano; Haiguo Sun; Rong Chen; Sara R. Jones

There are ∼1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy.


International Journal of Molecular Sciences | 2016

Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

Jamie H. Rose; Anushree N. Karkhanis; Björn Steiniger-Brach; Sara R. Jones

The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.


Neuroscience | 2015

Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors

Jordan T. Yorgason; Jamie H. Rose; J.M. McIntosh; Mark J. Ferris; Sara R. Jones

The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during high-frequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. Previous electrophysiology and microdialysis studies have demonstrated greater ethanol-induced VTA dopaminergic firing and NAc dopamine elevations in DBA compared to C57 mice. Additionally, DBA mice have greater ethanol responses in dopamine-related behaviors, including hyperlocomotion and conditioned place preference. Currently, we demonstrate greater sensitivity of ethanol inhibition of NAc dopamine signaling in C57 compared to DBA mice. The reduced sensitivity to ethanol inhibition in DBA mice may contribute to the overall greater ethanol-induced dopamine signaling and related behaviors observed in this strain. NAc cholinergic activity is known to potently modulate terminal dopamine release. Additionally, ethanol is known to interact with multiple aspects of nicotinic acetylcholine receptor activity. Therefore, we examined ethanol-mediated inhibition of dopamine release at two ethanol concentrations (80 and 160 mM) during bath application of the non-selective nicotinic receptor antagonist mecamylamine, as well as compounds selective for the β2-(dihydro-β-erythroidine hydrobromide; DhβE) and α6-(α-conotoxin MII [H9A; L15A]) subunit-containing receptors. Mecamylamine and DhβE decreased dopamine release and reduced ethanols inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80 mM, but not 160 mM, concentration. These data suggest that ethanol is acting in part through nicotinic acetylcholine receptors, or downstream effectors, to reduce dopamine release during high-frequency activity.

Collaboration


Dive into the Jamie H. Rose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong Chen

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin S. Calipari

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susy A. Kim

Wake Forest University

View shared research outputs
Researchain Logo
Decentralizing Knowledge