Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie Haywood is active.

Publication


Featured researches published by Jamie Haywood.


Journal of Biological Chemistry | 2005

The Heteromeric Organic Solute Transporter α-β, Ostα-Ostβ, Is an Ileal Basolateral Bile Acid Transporter

Paul A. Dawson; Melissa L. Hubbert; Jamie Haywood; Ann L. Craddock; Noa Zerangue; Whitney V. Christian; Nazzareno Ballatori

Bile acids are transported across the ileal enterocyte brush border membrane by the well characterized apical sodium-dependent bile acid transporter (Asbt) Slc10a2; however, the carrier(s) responsible for transporting bile acids across the ileocyte basolateral membrane into the portal circulation have not been fully identified. Transcriptional profiling of wild type and Slc10a2 null mice was employed to identify a new candidate basolateral bile acid carrier, the heteromeric organic solute transporter (Ost)α-Ostβ. By Northern blot analysis, Ostα and Ostβ mRNA was detected only in mouse kidney and intestine, mirroring the horizontal gradient of expression of Asbt in the gastrointestinal tract. Analysis of Ostα and Ostβ protein expression by immunohistochemistry localized both subunits to the basolateral surface of the mouse ileal enterocyte. The transport properties of Ostα-Ostβ were analyzed in stably transfected Madin-Darby canine kidney cells. Co-expression of mouse Ostα-Ostβ, but not the individual subunits, stimulated Na+-independent bile acid uptake and the apical-to-basolateral transport of taurocholate. In contrast, basolateral-to-apical transport was not affected by Ostα-Ostβ expression. Co-expression of Ostα and Ostβ was required to convert the Ostα subunit to a mature glycosylated endoglycosidase H-resistant form, suggesting that co-expression facilitates the trafficking of Ostα through the Golgi apparatus. Immunolocalization studies showed that co-expression was necessary for plasma membrane expression of both Ostα and Ostβ. These results demonstrate that the mouse Ostα-Ostβ heteromeric transporter is a basolateral bile acid carrier and may be responsible for bile acid efflux in ileum and other ASBT-expressing tissues.


Journal of Biological Chemistry | 2003

Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice

Paul A. Dawson; Jamie Haywood; Ann L. Craddock; Martha D. Wilson; Mary Tietjen; Kimberly D. Kluckman; Nobuyo Maeda; John S. Parks

The ileal apical sodium bile acid cotransporter participates in the enterohepatic circulation of bile acids. In patients with primary bile acid malabsorption, mutations in the ileal bile acid transporter gene (Slc10a2) lead to congenital diarrhea, steatorrhea, and reduced plasma cholesterol levels. To elucidate the quantitative role of Slc10a2 in intestinal bile acid absorption, the Slc10a2 gene was disrupted by homologous recombination in mice. Animals heterozygous (Slc10a2+/–) and homozygous (Slc10a2–/–) for this mutation were physically indistinguishable from wild type mice. In the Slc10a2–/– mice, fecal bile acid excretion was elevated 10- to 20-fold and was not further increased by feeding a bile acid binding resin. Despite increased bile acid synthesis, the bile acid pool size was decreased by 80% and selectively enriched in cholic acid in the Slc10a2–/– mice. On a low fat diet, the Slc10a2–/– mice did not have steatorrhea. Fecal neutral sterol excretion was increased only 3-fold, and intestinal cholesterol absorption was reduced only 20%, indicating that the smaller cholic acid-enriched bile acid pool was sufficient to facilitate intestinal lipid absorption. Liver cholesteryl ester content was reduced by 50% in Slc10a2–/– mice, and unexpectedly plasma high density lipoprotein cholesterol levels were slightly elevated. These data indicate that Slc10a2 is essential for efficient intestinal absorption of bile acids and that alternative absorptive mechanisms are unable to compensate for loss of Slc10a2 function.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The organic solute transporter α-β, Ostα-Ostβ, is essential for intestinal bile acid transport and homeostasis

Anuradha Rao; Jamie Haywood; Ann L. Craddock; Martin G. Belinsky; Gary D. Kruh; Paul A. Dawson

The apical sodium-dependent bile acid transporter (Asbt) is responsible for transport across the intestinal brush border membrane; however, the carrier(s) responsible for basolateral bile acid export into the portal circulation remains to be determined. Although the heteromeric organic solute transporter Ostα-Ostβ exhibits many properties predicted for a candidate intestinal basolateral bile acid transporter, the in vivo functions of Ostα-Ostβ have not been investigated. To determine the role of Ostα-Ostβ in intestinal bile acid absorption, the Ostα gene was disrupted by homologous recombination in mice. Ostα−/− mice were physically indistinguishable from wild-type mice. In everted gut sac experiments, transileal transport of taurocholate was reduced by >80% in Ostα−/− vs. wild-type mice; the residual taurocholate transport was further reduced to near-background levels in gut sacs prepared from Ostα−/−Mrp3−/− mice. The bile acid pool size was significantly reduced (>65%) in Ostα−/− mice, but fecal bile acid excretion was not elevated. The decreased pool size in Ostα−/− mice resulted from reduced hepatic Cyp7a1 expression that was inversely correlated with ileal expression of fibroblast growth factor 15 (FGF15). These data indicate that Ostα-Ostβ is essential for intestinal bile acid transport in mice. Unlike a block in intestinal apical bile acid uptake, genetic ablation of basolateral bile acid export disrupts the classical homeostatic control of hepatic bile acid biosynthesis.


Gut | 2010

Conditional Gata4 deletion in mice induces bile acid absorption in the proximal small intestine

Eva Beuling; Ilona M. Kerkhof; Grace A. Nicksa; Michael J. Giuffrida; Jamie Haywood; Daniel J aan de Kerk; Christina M. Piaseckyj; William T. Pu; Terry L. Buchmiller; Paul A. Dawson; Stephen D. Krasinski

Background and aims The transcription factor GATA4 is expressed throughout most of the small intestine except distal ileum, and restricts expression of the apical sodium-dependent bile acid transporter (ASBT), the rate-limiting intestinal bile acid transporter, to distal ileum. The hypothesis was tested that reduction of GATA4 activity in mouse small intestine results in an induction of bile acid transport in proximal small intestine sufficient to restore bile acid absorption and homeostasis after ileocaecal resection (ICR). Methods Bile acid homeostasis was characterised in non-surgical, sham or ICR mice using two recombinant Gata4 models in which Asbt expression is induced to different levels. Results Reduction of intestinal GATA4 activity resulted in an induction of ASBT expression, bile acid absorption and expression of bile acid-responsive genes in proximal small intestine, and a reduction of luminal bile acids in distal small intestine. While faecal bile acid excretion and bile acid pool size remained unchanged, the bile acid pool became more hydrophilic due to a relative increase in tauro-β-muricholate absorption. Furthermore, proximal induction of Asbt in both Gata4 mutant models corrected ICR-associated bile acid malabsorption, reversing the decrease in bile acid pool size and increase in faecal bile acid excretion and hepatic cholesterol 7α-hydroxylase expression. Conclusions Reduction of intestinal GATA4 activity induces bile acid absorption in proximal small intestine without inducing major changes in bile acid homeostasis. This induction is sufficient to correct bile acid malabsorption caused by ICR in mice.


Biochimica et Biophysica Acta | 2011

Ezetimibe restores biliary cholesterol excretion in mice expressing Niemann-Pick C1-Like 1 only in liver.

Weiqing Tang; Lin Jia; Yinyan Ma; Ping Xie; Jamie Haywood; Paul A. Dawson; Jian Li; Liqing Yu

Niemann-Pick C1-Like 1 (NPC1L1) is highly expressed in the small intestine across mammalian species and is the target of ezetimibe, a potent cholesterol absorption inhibitor. In humans, NPC1L1 is also expressed in the liver. We found that transgenic overexpression of NPC1L1 in the wild-type mouse liver inhibits biliary cholesterol secretion and raises blood cholesterol, which can be reversed by ezetimibe treatment. Unfortunately, the high expression of endogenous NPC1L1 in the intestine hampered a definitive establishment of the role of hepatic NPC1L1 in cholesterol metabolism and ezetimibe action in the liver because intestinal NPC1L1 dramatically influences cholesterol homeostasis and is a target of ezetimibe. To circumvent this obstacle, we crossed liver-specific NPC1L1 transgenic mice to NPC1L1 knockout (L1-KO) mice and created a mouse line expressing no endogenous NPC1L1, but human NPC1L1 in liver only (L1(LivOnly) mice). Compared to L1-KO mice, L1(LivOnly) mice on a 0.2% cholesterol diet showed significantly increased hepatic and plasma cholesterol, and despite a 90% reduction in biliary cholesterol excretion, their fecal cholesterol excretion remained completely unaltered. Remarkably, 4days of ezetimibe treatment significantly restored biliary cholesterol secretion in L1(LivOnly) mice. These findings demonstrated a direct role of hepatic NPC1L1 in regulating biliary cholesterol excretion and hepatic/blood cholesterol levels, and unequivocally established hepatic NPC1L1 as a target of ezetimibe.


Drug Metabolism and Disposition | 2009

Interaction of Macrolide Antibiotics with Intestinally Expressed Human and Rat Organic Anion-Transporting Polypeptides

Tian Lan; Anuradha Rao; Jamie Haywood; Charles B. Davis; Chao Han; Eric M. Garver; Paul A. Dawson

The macrolide antibiotics azithromycin and clarithromycin are large molecular weight compounds that exhibit moderate to excellent oral bioavailability in preclinical species and humans. Previous concomitant dosing studies in rats using rifamycin SV, a general organic anion-transporting polypeptide (OATP) inhibitor, suggested that the high oral absorption of azithromycin and clarithromycin may be caused by facilitative uptake by intestinal Oatps. In this study, we used OATP/Oatp-expressing cells to investigate the interaction of macrolides with rat Oatp1a5, human OATP1A2, and human/rat OATP2B1/Oatp2b1. These experiments showed that azithromycin and clarithromycin were potent inhibitors of rat Oatp1a5-mediated taurocholate uptake with apparent inhibitor constant (Ki) values of 3.3 and 2.4 μM, respectively. The macrolides functioned as noncompetitive inhibitors but were not transport substrates for rat Oatp1a5, as assessed by direct uptake measurements of radiolabeled azithromycin and clarithromycin. cis-Inhibition and direct uptake studies further showed that azithromycin and clarithromycin were only very weak inhibitors and not substrates for human OATP1A2 and human/rat OATP2B1/Oatp2b1. In summary, these results indicate that the macrolides azithromycin and clarithromycin potently inhibit rat Oatp1a5 but do not significantly interact with OATP1A2 and OATP2B1/Oatp2b1. These intestinally expressed OATP/Oatp(s) are not responsible for the postulated facilitative uptake of azithromycin and clarithromycin, and alternative facilitative pathways must exist for their intestinal absorption.


Journal of Hepatology | 2012

Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism

Tian Lan; Anuradha Rao; Jamie Haywood; Nancy D. Kock; Paul A. Dawson

BACKGROUND & AIMS Blocking intestinal bile acid (BA) absorption by inhibiting or inactivating the apical sodium-dependent BA transporter (Asbt) classically induces hepatic BA synthesis. In contrast, blocking intestinal BA absorption by inactivating the basolateral BA transporter, organic solute transporter alpha-beta (Ostα-Ostβ) is associated with an altered homeostatic response and decreased hepatic BA synthesis. The aim of this study was to determine the mechanisms underlying this phenotype, including the role of the farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15). METHODS BA and cholesterol metabolism, intestinal phenotype, expression of genes important for BA metabolism, and intestinal FGF15 expression were examined in wild type, Ostα(-/-), Fxr(-/-), and Ostα(-/-)Fxr(-/-) mice. RESULTS Inactivation of Ostα was associated with decreases in hepatic cholesterol 7α-hydroxylase (Cyp7a1) expression, BA pool size, and intestinal cholesterol absorption. Ostα(-/-) mice exhibited significant small intestinal changes, including altered ileal villus morphology, and increases in intestinal length and mass. Total ileal FGF15 expression was elevated almost 20-fold in Ostα(-/-) mice as a result of increased villus epithelial cell number and ileocyte FGF15 protein expression. Ostα(-/-)Fxr(-/-) mice exhibited decreased ileal FGF15 expression, restoration of intestinal cholesterol absorption, and increases in hepatic Cyp7a1 expression, fecal BA excretion, and BA pool size. FXR deficiency did not reverse the intestinal morphological changes or compensatory decrease for ileal Asbt expression in Ostα(-/-) mice. CONCLUSIONS These results indicate that signaling via FXR is required for the paradoxical repression of hepatic BA synthesis but not the complex intestinal adaptive changes in Ostα(-/-) mice.


Atherosclerosis | 2013

Inhibition of ileal apical but not basolateral bile acid transport reduces atherosclerosis in apoE⁻/⁻ mice.

Tian Lan; Jamie Haywood; Paul A. Dawson

OBJECTIVE Interruption of the enterohepatic circulation of bile acids induces hepatic bile acid synthesis, increases hepatic cholesterol demand, and increases clearance of apoB-containing lipoproteins in plasma. Based on these effects, bile acid sequestrants have been used for many years to treat hypercholesterolemia and the associated atherosclerosis. The objective of this study was to determine the effect of blocking ileal apical versus basolateral membrane bile acid transport on the development of hypercholesterolemia and atherosclerosis in mouse models. METHODS AND RESULTS ApoE(-/-) and Ldlr(-/-) mice deficient in the apical sodium-dependent bile acid transporter (Asbt) or apoE(-/-) mice deficient in the basolateral bile acid transporter (Ostα) were fed an atherogenic diet for 16 weeks. Bile acid metabolism, cholesterol metabolism, gene expression, and development of atherosclerosis were examined. Mice deficient in Asbt exhibited the classic response to interruption of the enterohepatic circulation of bile acids, including significant reductions in hepatic and plasma cholesterol levels, and reduced aortic cholesteryl ester content. Ileal Fibroblast Growth Factor-15 (FGF15) expression was significantly reduced in Asbt(-/-)apoE(-/-) mice and was inversely correlated with expression of hepatic cholesterol 7-hydroxylase (Cyp7a1). Ileal FGF15 expression was directly correlated with plasma cholesterol levels and aortic cholesterol content. In contrast, plasma and hepatic cholesterol levels and atherosclerosis development were not reduced in apoE(-/-) mice deficient in Ostα. CONCLUSIONS Decreases in ileal FGF15, with subsequent increases in hepatic Cyp7a1 expression and bile acid synthesis appear to be necessary for the plasma cholesterol-lowering and atheroprotective effects associated with blocking intestinal bile acid absorption.


Digestive Diseases | 2011

Molecular Mechanisms of Altered Bile Acid Homeostasis in Organic Solute Transporter-Alpha Knockout Mice

Tian Lan; Jamie Haywood; Anuradha Rao; Paul A. Dawson

Background/Aims: Mutations in the apical sodium-dependent bile acid transporter (SLC10A2) block intestinal bile acid absorption, resulting in a compensatory increase in hepatic bile acid synthesis. Inactivation of the basolateral membrane bile acid transporter (OSTα-OSTβ) also impairs intestinal bile acid absorption, but hepatic bile acid synthesis was paradoxically repressed. We hypothesized that the altered bile acid homeostasis resulted from ileal trapping of bile acids that act via the farnesoid X receptor (FXR) to induce overexpression of FGF15. To test this hypothesis, we investigated whether blocking FXR signaling would reverse the bile acid synthesis phenotype in Ostα null mice. Methods: The corresponding null mice were crossbred to generate OstαFxr double-null mice. All experiments compared wild-type, Ostα, Fxr and OstαFxr null littermates. Analysis of the in vivo phenotype included measurements of bile acid fecal excretion, pool size and composition. Hepatic and intestinal gene and protein expression were also examined. Results:OstαFxr null mice exhibited increased bile acid fecal excretion and pool size, and decreased bile acid pool hydrophobicity, as compared with Ostα null mice. Inactivation of FXR reversed the increase in ileal total FGF15 expression, which was associated with a significant increase in hepatic Cyp7a1 expression. Conclusions: Inactivation of FXR largely unmasked the bile acid malabsorption phenotype and corrected the bile acid homeostasis defect in Ostα null mice, suggesting that inappropriate activation of the FXR-FGF15-FGFR4 pathway partially underlies this phenotype. Intestinal morphological changes and reduced apical sodium-dependent bile acid transporter expression were maintained in Ostα–/–Fxr–/– mice, indicating that FXR is not required for these adaptive responses.


Cellular and molecular gastroenterology and hepatology | 2018

Organic Solute Transporter α-β Protects Ileal Enterocytes From Bile Acid–Induced Injury

Courtney B. Ferrebee; Jianing Li; Jamie Haywood; Kimberly Pachura; Brian S. Robinson; Benjamin H. Hinrichs; Rheinallt Jones; Anuradha Rao; Paul A. Dawson

Background & Aims Ileal bile acid absorption is mediated by uptake via the apical sodium-dependent bile acid transporter (ASBT), and export via the basolateral heteromeric organic solute transporter α-β (OSTα-OSTβ). In this study, we investigated the cytotoxic effects of enterocyte bile acid stasis in Ostα-/- mice, including the temporal relationship between intestinal injury and initiation of the enterohepatic circulation of bile acids. Methods Ileal tissue morphometry, histology, markers of cell proliferation, gene, and protein expression were analyzed in male and female wild-type and Ostα-/- mice at postnatal days 5, 10, 15, 20, and 30. Ostα-/-Asbt-/- mice were generated and analyzed. Bile acid activation of intestinal Nrf2-activated pathways was investigated in Drosophila. Results As early as day 5, Ostα-/- mice showed significantly increased ileal weight per length, decreased villus height, and increased epithelial cell proliferation. This correlated with premature expression of the Asbt and induction of bile acid–activated farnesoid X receptor target genes in neonatal Ostα-/- mice. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase-1 and Nrf2–anti-oxidant responsive genes were increased significantly in neonatal Ostα-/- mice at these postnatal time points. Bile acids also activated Nrf2 in Drosophila enterocytes and enterocyte-specific knockdown of Nrf2 increased sensitivity of flies to bile acid–induced toxicity. Inactivation of the Asbt prevented the changes in ileal morphology and induction of anti-oxidant response genes in Ostα-/- mice. Conclusions Early in postnatal development, loss of Ostα leads to bile acid accumulation, oxidative stress, and a restitution response in ileum. In addition to its essential role in maintaining bile acid homeostasis, Ostα-Ostβ functions to protect the ileal epithelium against bile acid–induced injury. NCBI Gene Expression Omnibus: GSE99579.

Collaboration


Dive into the Jamie Haywood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tian Lan

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge