Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jamie M. Sperger is active.

Publication


Featured researches published by Jamie M. Sperger.


Nucleic Acids Research | 2012

Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis

Amy T. Cavanagh; Jamie M. Sperger; Karen M. Wassarman

6S RNAs function through interaction with housekeeping forms of RNA polymerase holoenzyme (Eσ70 in Escherichia coli, EσA in Bacillus subtilis). Escherichia coli 6S RNA accumulates to high levels during stationary phase, and has been shown to be released from Eσ70 during exit from stationary phase by a process in which 6S RNA serves as a template for Eσ70 to generate product RNAs (pRNAs). Here, we demonstrate that not only does pRNA synthesis occur, but it is an important mechanism for regulation of 6S RNA function that is required for cells to exit stationary phase efficiently in both E. coli and B. subtilis. Bacillus subtilis has two 6S RNAs, 6S-1 and 6S-2. Intriguingly, 6S-2 RNA does not direct pRNA synthesis under physiological conditions and its non-release from EσA prevents efficient outgrowth in cells lacking 6S-1 RNA. The behavioral differences in the two B. subtilis RNAs clearly demonstrate that they act independently, revealing a higher than anticipated diversity in 6S RNA function globally. Overexpression of a pRNA-synthesis-defective 6S RNA in E. coli leads to decreased cell viability, suggesting pRNA synthesis-mediated regulation of 6S RNA function is important at other times of growth as well.


Journal of Cellular Physiology | 2009

IL-1β Receptor Blockade Protects Islets Against Pro-inflammatory Cytokine Induced Necrosis and Apoptosis

Alice Schwarznau; Matthew S. Hanson; Jamie M. Sperger; Brian R. Schram; Juan S. Danobeitia; Krista K. Greenwood; Ashwanth Vijayan; Luis A. Fernandez

Pro‐inflammatory cytokines (PIC) impair islet viability and function by activating inflammatory pathways that induce both necrosis and apoptosis. The aim of this study was to utilize an in vitro rat islet model to evaluate the efficacy of a clinically approved IL‐1 receptor antagonist (Anakinra) in blocking PIC induced islet impairment. Isolated rat islets were cultured for 48 h ± PIC (IL‐1β, IFNγ, and TNFα) and ±IL‐1ra then assayed for cellular integrity by flow cytometry, MAPK phosphorylation by proteome array, and gene expression by RT‐PCR. Nitric oxide (NO) release into the culture media was measured by Griess reaction. Islet functional potency was tested by glucose stimulated insulin secretion (GSIS) and by transplantation into streptozotocin‐induced diabetic NOD.scid mice. Rat islets cultured with PIC upregulated genes for NOS2a, COX2, IL6, IL1b, TNFa, and HMOX1. IL‐1ra prevented the PIC induced upregulation of all of these genes except for TNFa. Inhibition of PIC induced iNOS by NG‐monomethyl‐L‐arginine (NMMA) only blocked the increased expression of HMOX1. IL‐1ra completely abrogated the effects of PIC with respect to NO production, necrosis, apoptosis, mitochondrial dysfunction, GSIS, and in vivo potency. IL‐1ra was not effective at preventing the induction of necrosis or apoptosis by exogenous NO. These data demonstrate that Anakinra is an effective agent to inhibit the activation of IL‐1β dependent inflammatory pathways in cultured rat islets and support the extension of its application to human islets in vitro and potentially as a post transplant therapy. J. Cell. Physiol. 220: 341–347, 2009.


Analytical Chemistry | 2013

Selective Nucleic Acid Removal via Exclusion (SNARE): Capturing mRNA and DNA from a Single Sample

Lindsay N. Strotman; Rachel O’Connell; Benjamin P. Casavant; Scott M. Berry; Jamie M. Sperger; Joshua M. Lang; David J. Beebe

The path from gene (DNA) to gene product (RNA or protein) is the foundation of genotype giving rise to phenotype. Comparison of genomic analyses (DNA) with paired transcriptomic studies (mRNA) is critical to evaluating the pathogenic processes that give rise to human disease. The ability to analyze both DNA and mRNA from the same sample is not only important for biologic interrogation but also to minimize variance (e.g., sample loss) unrelated to the biology. Existing methods for RNA and DNA purification from a single sample are typically time-consuming and labor intensive or require large sample sizes to split for separate RNA and DNA extraction procedures. Thus, there is a need for more efficient and cost-effective methods to purify both RNA and DNA from a single sample. To address this need, we have developed a technique, termed SNARE (Selective Nucleic Acid Removal via Exclusion), that uses pinned oil interfaces to simultaneous purify mRNA and DNA from a single sample. A unique advantage of SNARE is the elimination of dilutive wash and centrifugation processes that are fundamental to conventional methods where sample is typically discarded. This minimizes loss and maximizes recovery by allowing nondilutive reinterrogation of the sample. We demonstrate that SNARE is more sensitive than commercially available kits, robustly and repeatably achieving mRNA and DNA purification from extremely low numbers of cells for downstream analyses. In addition to sensitivity, SNARE is fast, easy to use, and cost-effective and requires no laboratory infrastructure or hazardous chemicals. We demonstrate the clinical utility of the SNARE with prostate cancer circulating tumor cells to demonstrate its ability to perform both genomic and transcriptomic interrogation on rare cell populations that would be difficult to achieve with any current method.


Clinical Cancer Research | 2017

Androgen Receptor Variant AR-V9 Is Coexpressed with AR-V7 in Prostate Cancer Metastases and Predicts Abiraterone Resistance

Manish Kohli; Yeung Ho; David W. Hillman; Jamie L. Van Etten; Christine Henzler; Rendong Yang; Jamie M. Sperger; Yingming Li; Elizabeth Tseng; Ting Hon; Tyson A. Clark; Winston Tan; Rachel Carlson; Liguo Wang; Hugues Sicotte; Ho Thai; Rafael E. Jimenez; Haojie Huang; Peter T. Vedell; Bruce W. Eckloff; Jorge Fernando Quevedo; Henry C. Pitot; Brian A. Costello; Jin Jen; Eric D. Wieben; Kevin A. T. Silverstein; Joshua M. Lang; Liewei Wang; Scott M. Dehm

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies. Accordingly, efforts are under way to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC). The purpose of this study was to understand whether other AR variants may be coexpressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design: We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models. Coexpression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively. Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera. Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently coexpressed with AR-V7. Both AR variant species were found to share a common 3′ terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously thought to target AR-V7 uniquely. AR-V9 promoted ligand-independent growth of prostate cancer cells. High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0; 95% confidence interval, 1.31–12.2; P = 0.02). Conclusions: AR-V9 may be an important component of therapeutic resistance in CRPC. Clin Cancer Res; 23(16); 4704–15. ©2017 AACR.


Journal of Surgical Research | 2012

Early Activation of the Inflammatory Response in the Liver of Brain-Dead Non-Human Primates

Juan S. Danobeitia; Jamie M. Sperger; Matthew S. Hanson; Elisa E. Park; Peter J. Chlebeck; Drew A. Roenneburg; Mallory L. Sears; Jolien X. Connor; Alice Schwarznau; Luis A. Fernandez

BACKGROUND Donor brain death (BD) triggers a systemic inflammatory response that reduces organ quality and increases immunogenicity of the graft. We characterized the early innate immune response induced by BD in the liver and peripheral blood of hemodinamically stable non-human primates (NHP). METHODS Rhesus macaques were assigned to either brain death or control group. BD was induced by inflation of a subdurally placed catheter and confirmed clinically and by cerebral angiography. Animals were monitored for 6 h after BD and managed to maintain hemodynamic stability. RESULTS Cortisol, epinephrine, nor-epinephrine, and IL-6 levels were elevated immediately after BD induction. Neutrophils and monocytes significantly increased in circulation following BD induction, while dendritic cells were decreased at 6 h post-induction. Flow cytometry revealed increased expression of chemokine receptors CxCR1, CxCR2, CCR2, and CCR5 in peripheral blood leukocytes from NHP subjected to BD. Microarray analysis demonstrated a significant up-regulation of genes related to innate inflammatory responses, toll-like receptor signaling, stress pathways, and apoptosis/cell death in BD subjects. Conversely, pathways related to glucose, lipid, and protein metabolism were down-regulated. In addition, increased expression of SOCS3, S100A8/A9, ICAM-1, MHC class II, neutrophil accumulation, and oxidative stress markers (carboxy-methyl-lysine and hydroxynonenal) were detected by immunoblot and immunohistochemistry. CONCLUSIONS Activation of the innate immune response after BD in association with a down-regulation of genes associated with cell metabolism pathways in the liver. These findings may provide a potential explanation for the reduced post-transplant function of organs from brain dead donors. In addition, this work suggests potential novel targets to improve donor management strategies.


Clinical Cancer Research | 2017

Integrated Analysis of Multiple Biomarkers from Circulating Tumor Cells Enabled by Exclusion-Based Analyte Isolation.

Jamie M. Sperger; Lindsay N. Strotman; Allison Welsh; Benjamin P. Casavant; Zachery Chalmers; Sacha Horn; Erika Heninger; Stephanie M. Thiede; Jacob T Tokar; Benjamin K. Gibbs; David J. Guckenberger; Lakeesha Carmichael; Scott M. Dehm; Philip J. Stephens; David J. Beebe; Scott M. Berry; Joshua M. Lang

Purpose: There is a critical clinical need for new predictive and pharmacodynamic biomarkers that evaluate pathway activity in patients treated with targeted therapies. A microscale platform known as VERSA (versatile exclusion-based rare sample analysis) was developed to integrate readouts across protein, mRNA, and DNA in circulating tumor cells (CTC) for a comprehensive analysis of the androgen receptor (AR) signaling pathway. Experimental Design: Utilizing exclusion-based sample preparation principles, a handheld chip was developed to perform CTC capture, enumeration, quantification, and subcellular localization of proteins and extraction of mRNA and DNA. This technology was validated across integrated endpoints in cell lines and a cohort of patients with castrate-resistant prostate cancer (CRPC) treated with AR-targeted therapies and chemotherapies. Results: The VERSA was validated in cell lines to analyze AR protein expression, nuclear localization, and gene expression targets. When applied to a cohort of patients, radiographic progression was predicted by the presence of multiple AR splice variants and activity in the canonical AR signaling pathway. AR protein expression and nuclear localization identified phenotypic heterogeneity. Next-generation sequencing with the FoundationOne panel detected copy number changes and point mutations. Longitudinal analysis of CTCs identified acquisition of multiple AR variants during targeted treatments and chemotherapy. Conclusions: Complex mechanisms of resistance to AR-targeted therapies, across RNA, DNA, and protein endpoints, exist in patients with CRPC and can be quantified in CTCs. Interrogation of the AR signaling pathway revealed distinct patterns relevant to tumor progression and can serve as pharmacodynamic biomarkers for targeted therapies. Clin Cancer Res; 23(3); 746–56. ©2016 AACR.


PLOS ONE | 2016

High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1

Jennifer L. Schehr; Zachery D. Schultz; Jay Warrick; David J. Guckenberger; Hannah M. Pezzi; Jamie M. Sperger; Erika Heninger; Anwaar Saeed; Ticiana Leal; Kara Mattox; Anne M. Traynor; Toby C. Campbell; Scott M. Berry; David J. Beebe; Joshua M. Lang

Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the specificity of CTC identification and the accuracy of biomarker evaluation.


Cell Transplantation | 2015

Donor Pretreatment With IL-1 Receptor Antagonist Attenuates Inflammation and Improves Functional Potency in Islets From Brain-Dead Nonhuman Primates.

Juan S. Danobeitia; Matthew S. Hanson; Peter J. Chlebeck; Elisa Park; Jamie M. Sperger; Alice Schwarznau; Luis A. Fernandez

Most pancreas and islet grafts are recovered from brain-dead (BD) donors. In this study we characterized the early inflammatory response induced by brain death in pancreata and islets from nonhuman primate donors and evaluated the effect of targeted anti-inflammatory intervention in the protection of pancreatic islets prior to transplantation. BD donors were monitored for 6 h and assigned to three experimental groups: group 1: BD-untreated donors (BD-UT) (n = 7), group 2: BD + donor pretreatment with IL-1ra (n = 6), and group 3: non-BD animals serving as controls (n = 7). We observed an IL-1ra-dependent reduction in the mobilization and activation of neutrophils from bone marrow and a significantly reduced accumulation of CD68+ leukocytes in the pancreas and islets after brain death induction. Donor treatment with IL-1ra significantly decreased chemokine mRNA expression (MCP-1, IL-8, and MIP-1a) and attenuated the activation of circulating neutrophils and intraislet macrophages as demonstrated by a reduction in intracellular IL-1β, IL-6, MCP-1, and MIP-1α expression. As a result, IL-1ra dramatically improved viability, mitochondrial membrane polarity, and islet engraftment in mice transplanted using a minimal islet mass. These results suggest that early immunomodulation targeting inflammation in the BD donor may represent an effective therapeutic strategy to improve islet quality and function prior to transplantation.


Oncotarget | 2016

Inducible expression of cancer-testis antigens in human prostate cancer

Erika Heninger; Timothy Krueger; Stephanie M. Thiede; Jamie M. Sperger; Brianna L. Byers; Madison R. Kircher; David Kosoff; Bing Yang; David F. Jarrard; Douglas G. McNeel; Joshua M. Lang

Immune tolerance to self-antigens can limit robust anti-tumor immune responses in the use of tumor vaccines. Expression of novel tumor associated antigens can improve immune recognition and lysis of tumor cells. The cancer-testis antigen (CTA) family of proteins has been hypothesized to be an ideal class of antigens due to tumor-restricted expression, a subset of which have been found to induce antibody responses in patients with prostate disease. We demonstrate that CTA expression is highly inducible in five different Prostate Cancer (PC) cell lines using a hypomethylating agent 5-Aza-2′-deoxycytidine (5AZA) and/or a histone deacetylase inhibitor LBH589. These CTAs include NY-ESO1, multiple members of the MAGE and SSX families and NY-SAR35. A subset of CTAs is synergistically induced by the combination of 5AZA and LBH589. We developed an ex vivo organ culture using human PC biopsies for ex vivo drug treatments to evaluate these agents in clinical samples. These assays found significant induction of SSX2 in 9/9 distinct patient samples and NY-SAR35 in 7/9 samples. Further, we identify expression of SSX2 in circulating tumor cells (CTC) from patients with advanced PC. These results indicate that epigenetic modifying agents can induce expression of a broad range of neoantigens in human PC and may serve as a useful adjunctive therapy with novel tumor vaccines and checkpoint inhibitors.


The Journal of Urology | 2018

Prostate Cancer Disseminated Tumor Cells are Rarely Detected in the Bone Marrow of Patients with Localized Disease Undergoing Radical Prostatectomy across Multiple Rare Cell Detection Platforms

Heather J. Chalfin; Stephanie Glavaris; Paymaneh D. Malihi; Jamie M. Sperger; Michael A. Gorin; Changxue Lu; C. Rory Goodwin; Yan Chen; Emily Caruso; Ruth Dumpit; Peter Kuhn; Joshua M. Lang; Peter S. Nelson; Jun Luo; Kenneth J. Pienta

Purpose: Prostate circulating tumor cells escape into peripheral blood and enter bone marrow as disseminated tumor cells, representing an early step before conventionally detectable metastasis. It is unclear how frequently this occurs in localized disease and existing detection methods rely on epithelial markers with low specificity and sensitivity. We used multiple methodologies of disseminated tumor cell detection in bone marrow harvested at radical prostatectomy. Materials and Methods: Bone marrow was harvested from 208 clinically localized cases, 16 controls and 5 metastatic cases with peripheral blood obtained from 37 metastatic cases. Samples were evaluated at 4 centers with 4 distinct platforms using antibody enrichment with the AdnaTest (Qiagen®) or VERSA (versatile exclusion based rare sample analysis), or whole sample interrogation with the RareCyte platform (Seattle, Washington) or HD‐SCA (high definition single cell assay) using traditional epithelial markers and prostate specific markers. We investigated the sensitivity and specificity of these markers by evaluating expression levels in control and metastatic cases. Results: EpCAM, NKX3.1 and AR were nonspecifically expressed in controls and in most samples using AdnaTest with no relation to perioperative variables. Only 1 patient with localized disease showed positive results for the prostate specific marker PSA. With the VERSA platform no localized case demonstrated disseminated tumor cells. With the RareCyte and HD‐SCA platforms only a single patient had 1 disseminated tumor cell. Conclusions: Evaluation across multiple platforms revealed that epithelial markers are nonspecific in bone marrow and, thus, not suitable for disseminated tumor cell detection. Using prostate specific markers disseminated tumor cells were typically not detected in patients with localized prostate cancer.

Collaboration


Dive into the Jamie M. Sperger's collaboration.

Top Co-Authors

Avatar

Joshua M. Lang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David J. Beebe

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Scott M. Berry

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lindsay N. Strotman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Benjamin P. Casavant

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Erika Heninger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Luis A. Fernandez

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Schehr

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew S. Hanson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David J. Guckenberger

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge