Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan A. Hiss is active.

Publication


Featured researches published by Jan A. Hiss.


Nature Reviews Drug Discovery | 2012

Designing antimicrobial peptides: form follows function

Christopher D. Fjell; Jan A. Hiss; Robert E. W. Hancock; Gisbert Schneider

Multidrug-resistant bacteria are a severe threat to public health. Conventional antibiotics are becoming increasingly ineffective as a result of resistance, and it is imperative to find new antibacterial strategies. Natural antimicrobials, known as host defence peptides or antimicrobial peptides, defend host organisms against microbes but most have modest direct antibiotic activity. Enhanced variants have been developed using straightforward design and optimization strategies and are being tested clinically. Here, we describe advanced computer-assisted design strategies that address the difficult problem of relating primary sequence to peptide structure, and are delivering more potent, cost-effective, broad-spectrum peptides as potential next-generation antibiotics.


Molecular Informatics | 2016

Deep Learning in Drug Discovery

Erik Gawehn; Jan A. Hiss; Gisbert Schneider

Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of “deep learning”. Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer‐assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.


Eukaryotic Cell | 2009

An Unusual ERAD-Like Complex Is Targeted to the Apicoplast of Plasmodium falciparum

Simone Spork; Jan A. Hiss; Katharina Mandel; Maik S. Sommer; Taco W. A. Kooij; Trang Chu; Gisbert Schneider; Uwe G. Maier; Jude M. Przyborski

ABSTRACT Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been “rewired” to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.


PLOS Pathogens | 2013

Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export.

Arlett Heiber; Florian Kruse; Christian Pick; Christof Grüring; Sven Flemming; Alexander Oberli; Hanno Schoeler; Silke Retzlaff; Paolo Mesén-Ramírez; Jan A. Hiss; Madhusudan Kadekoppala; Leonie Hecht; Anthony A. Holder; Tim-Wolf Gilberger; Tobias Spielmann

Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.


Molecular & Cellular Proteomics | 2013

Proteomic and Genetic Analyses Demonstrate that Plasmodium berghei Blood Stages Export a Large and Diverse Repertoire of Proteins

Erica M. Pasini; Joanna A. M. Braks; Jannik Fonager; Onny Klop; Elena Aime; Roberta Spaccapelo; Thomas D. Otto; Matthew Berriman; Jan A. Hiss; Alan W. Thomas; Matthias Mann; Chris J. Janse; Clemens H. M. Kocken; Blandine Franke-Fayard

Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.


Briefings in Bioinformatics | 2009

Architecture, function and prediction of long signal peptides

Jan A. Hiss; Gisbert Schneider

Protein targeting in eukaryotic cells is vital for cell survival and development. N-terminal signal peptides guide proteins to the membrane of the endoplasmic reticulum (ER) and initiate translocation into the ER lumen. Here, we review the status of signal peptide architecture and prediction with an emphasis on exceptionally long signal peptides, which often escape the notion of the currently available prediction methods. We benchmark publicly available prediction methods for their ability to correctly identify exceptionally long signal peptides. A set of 136 annotated eukaryotic signals served as reference data. The best prediction tool detected only 63%. A potential reason for the poor performance is the domain architecture of long signal peptides, whose structural peculiarities are insufficiently considered by current prediction algorithms. To overcome this limitation, we motivate a general domain view of long signal peptides, which becomes detectable when both the overall length and secondary structure of long signal peptides are taken into consideration. This concept provides a structural framework for identifying and understanding multiple targeting and post-targeting functions.


Future Medicinal Chemistry | 2011

Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors

Gisbert Schneider; Tim Geppert; Markus Hartenfeller; Felix Reisen; Alexander Klenner; Michael Reutlinger; Volker Hähnke; Jan A. Hiss; Heiko Zettl; Sarah Keppner; Birgit Spänkuch; Petra Schneider

BACKGROUND De novo design of drug-like compounds with a desired pharmacological activity profile has become feasible through innovative computer algorithms. Fragment-based design and simulated chemical reactions allow for the rapid generation of candidate compounds as blueprints for organic synthesis. METHODS We used a combination of complementary virtual-screening tools for the analysis of de novo designed compounds that were generated with the aim to inhibit inactive polo-like kinase 1 (Plk1), a target for the development of cancer therapeutics. A homology model of the inactive state of Plk1 was constructed and the nucleotide binding pocket conformations in the DFG-in and DFG-out state were compared. The de novo-designed compounds were analyzed using pharmacophore matching, structure-activity landscape analysis, and automated ligand docking. One compound was synthesized and tested in vitro. RESULTS The majority of the designed compounds possess a generic architecture present in known kinase inhibitors. Predictions favor kinases as targets of these compounds but also suggest potential off-target effects. Several bioisosteric replacements were suggested, and de novo designed compounds were assessed by automated docking for potential binding preference toward the inactive (type II inhibitors) over the active conformation (type I inhibitors) of the kinase ATP binding site. One selected compound was successfully synthesized as suggested by the software. The de novo-designed compound exhibited inhibitory activity against inactive Plk1 in vitro, but did not show significant inhibition of active Plk1 and 38 other kinases tested. CONCLUSIONS Computer-based de novo design of screening candidates in combination with ligand- and receptor-based virtual screening generates motivated suggestions for focused library design in hit and lead discovery. Attractive, synthetically accessible compounds can be obtained together with predicted on- and off-target profiles and desired activities.


PLOS ONE | 2008

The Plasmodium Export Element Revisited

Jan A. Hiss; Jude M. Przyborski; Florian Schwarte; Klaus Lingelbach; Gisbert Schneider

We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide.


Scientific Reports | 2016

Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

Thomas Schmidt; Anna M. Perna; Tim Fugmann; Manja Böhm; Jan A. Hiss; Sarah Haller; Camilla Götz; Nicole Tegtmeyer; Benjamin Hoy; Tilman T. Rau; Dario Neri; Steffen Backert; Gisbert Schneider; Silja Wessler

The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.


Current Pharmaceutical Design | 2010

Concepts and applications of "natural computing" techniques in de novo drug and peptide design.

Jan A. Hiss; Markus Hartenfeller; Gisbert Schneider

Evolutionary algorithms, particle swarm optimization, and ant colony optimization have emerged as robust optimization methods for molecular modeling and peptide design. Such algorithms mimic combinatorial molecule assembly by using molecular fragments as building-blocks for compound construction, and relying on adaptation and emergence of desired pharmacological properties in a population of virtual molecules. Nature-inspired algorithms might be particularly suited for bioisosteric replacement or scaffold-hopping from complex natural products to synthetically more easily accessible compounds that are amenable to optimization by medicinal chemistry. The theory and applications of selected nature-inspired algorithms for drug design are reviewed, together with practical applications and a discussion of their advantages and limitations.

Collaboration


Dive into the Jan A. Hiss's collaboration.

Top Co-Authors

Avatar

Gisbert Schneider

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Petra Schneider

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alex T. Müller

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Gisela Gabernet

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna M. Perna

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge