Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan A. L. van Kan is active.

Publication


Featured researches published by Jan A. L. van Kan.


Molecular Plant Pathology | 2007

Botrytis cinerea: the cause of grey mould disease.

Brian Williamson; Bettina Tudzynski; Paul Tudzynski; Jan A. L. van Kan

INTRODUCTION Botrytis cinerea (teleomorph: Botryotinia fuckeliana) is an airborne plant pathogen with a necrotrophic lifestyle attacking over 200 crop hosts worldwide. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. It has become an important model for molecular study of necrotrophic fungi. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botryotinia. HOST RANGE AND SYMPTOMS Over 200 mainly dicotyledonous plant species, including important protein, oil, fibre and horticultural crops, are affected in temperate and subtropical regions. It can cause soft rotting of all aerial plant parts, and rotting of vegetables, fruits and flowers post-harvest to produce prolific grey conidiophores and (macro)conidia typical of the disease. PATHOGENICITY B. cinerea produces a range of cell-wall-degrading enzymes, toxins and other low-molecular-weight compounds such as oxalic acid. New evidence suggests that the pathogen triggers the host to induce programmed cell death as an attack strategy. Resistance: There are few examples of robust genetic host resistance, but recent work has identified quantitative trait loci in tomato that offer new approaches for stable polygenic resistance in future. USEFUL WEBSITES http://www.phi-base.org/query.php, http://www.broad.mit.edu/annotation/genome/botrytis_cinerea/Home.html, http://urgi.versailles.inra.fr/projects/Botrytis/, http://cogeme.ex.ac.uk.


PLOS Genetics | 2011

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

Joelle Amselem; Christina A. Cuomo; Jan A. L. van Kan; Muriel Viaud; Ernesto P. Benito; Arnaud Couloux; Pedro M. Coutinho; Ronald P. de Vries; Paul S. Dyer; Sabine Fillinger; Elisabeth Fournier; Lilian Gout; Matthias Hahn; Linda T. Kohn; Nicolas Lapalu; Kim M. Plummer; Jean-Marc Pradier; Emmanuel Quévillon; Amir Sharon; Adeline Simon; Arjen ten Have; Bettina Tudzynski; Paul Tudzynski; Patrick Wincker; Marion Andrew; Véronique Anthouard; Ross E. Beever; Rolland Beffa; Isabelle Benoit; Ourdia Bouzid

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Plant Physiology | 2002

The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea

José Díaz; Arjen ten Have; Jan A. L. van Kan

Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutantNever ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutantEpinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance.


Molecular Plant-microbe Interactions | 2000

Transgenic expression of pear PGIP in tomato limits fungal colonization.

Ann L. T. Powell; Jan A. L. van Kan; Arjen ten Have; Jaap Visser; L. Carl Greve; Alan B. Bennett; John M. Labavitch

Transgenic tomato plants expressing the pear fruit polygalacturonase inhibitor protein (pPGIP) were used to demonstrate that this inhibitor of fungal pathogen endopolygalacturonases (endo-PGs) influences disease development. Transgenic expression of pPGIP resulted in abundant accumulation of the heterologous protein in all tissues and did not alter the expression of an endogenous tomato fruit PGIP (tPGIP). The pPGIP protein was detected, as expected, in the cell wall protein fraction in all transgenic tissues. Despite differential glycosylation in vegetative and fruit tissues, the expressed pPGIP was active in both tissues as an inhibitor of endo-PGs from Botrytis cinerea. The growth of B. cinerea on ripe tomato fruit expressing pPGIP was reduced, and tissue breakdown was diminished by as much as 15%, compared with nontransgenic fruit In transgenic leaves, the expression of pPGIP reduced lesions of macerated tissue approximately 25%, a reduction of symptoms of fungal growth similar to that observed with a B. cinerea strain in which a single endo-PG gene, Bcpg1, had been deleted (A. ten Have, W. Mulder, J. Visser, and J. A. L. van Kan, Mol. Plant-Microbe Interact. 11:1009-1016, 1998). Heterologous expression of pPGIP has demonstrated that PGIP inhibition of fungal PGs slows the expansion of disease lesions and the associated tissue maceration.


Molecular Plant-microbe Interactions | 2008

NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea.

Nadja Segmüller; Leonie Kokkelink; Sabine Giesbert; Daniela Odinius; Jan A. L. van Kan; Paul Tudzynski

Nicotinamide adenine dinucleotide (NADPH) oxidases have been shown to be involved in various differentiation processes in fungi. We investigated the role of two NADPH oxidases in the necrotrophic phytopathogenic fungus, Botrytis cinerea. The genes bcnoxA and bcnoxB were cloned and characterized; their deduced amino acid sequences show high homology to fungal NADPH oxidases. Analyses of single and double knock-out mutants of both NADPH oxidase genes showed that both bcnoxA and bcnoxB are involved in formation of sclerotia. Both genes have a great impact on pathogenicity: whereas bcnoxB mutants showed a retarded formation of primary lesions, probably due to an impaired formation of penetration structures, bcnoxA mutants were able to penetrate host tissue in the same way as the wild type but were much slower in colonizing the host tissue. Double mutants showed an additive effect: they were aberrant in penetration and colonization of plant tissue and, therefore, almost nonpathogenic. To study the structure of the fungal Nox complex in more detail, bcnoxR (encoding a homolog of the mammalian p67(phox), a regulatory subunit of the Nox complex) was functionally characterized. The phenotype of DeltabcnoxR mutants is identical to that of DeltabcnoxAB double mutants, providing evidence that BcnoxR is involved in activation of both Bcnox enzymes.


Molecular Plant Pathology | 2007

Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

Peter van Baarlen; Ernst J. Woltering; Martijn Staats; Jan A. L. van Kan

SUMMARY Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea. To study host and non-host interactions in more detail, the three Botrytis species were inoculated on Arabidopsis wild-types and 23 mutant genotypes. Disease development was monitored macroscopically by quantifying the lesion area and microscopically by bright-field and fluorescence microscopy following histochemical staining. B. cinerea and B. tulipae were very similar in their ability to infect the tested Arabidopsis genotypes, whereas B. elliptica caused disease only on a few Arabidopsis mutant genotypes. Arabidopsis mutants with a delayed or reduced cell death response were generally more resistant to Botrytis infection, whereas mutants in which cell death was accelerated were more susceptible. Differences in susceptibility between genotypes were generally gradual. Only the camalexin-deficient mutant pad3 was fully susceptible to all three Botrytis species. Cellular changes were monitored during compatible and incompatible interactions. The formation of papillae, the presence of lysosome-like vesicles and the intracellular accumulation of H(2)O(2) and nitric oxide were visualized in the infection zones using fluorescent probes. Based on histology and responses of Arabidopsis mutants, a model is proposed in which resistance against Botrytis, besides the production of camalexin, depends on the balance between cell death and survival.


Molecular Microbiology | 2002

Resveratrol acts as a natural profungicide and induces self-intoxication by a specific laccase.

A. Schouten; Lia Wagemakers; Francesca Lucia Stefanato; Rachel M. van der Kaaij; Jan A. L. van Kan

The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular genetic analysis of B. cinerea laccases by characterizing laccase genes and evaluating the phenotype of targeted gene replacement mutants. Two different laccase genes from B. cinerea were characterized, Bclcc1 and Bclcc2. Only Bclcc2 was strongly expressed in liquid cultures in the presence of either resveratrol or tannins. This suggested that Bclcc2, but not Bclcc1, plays an active role in the oxidation of both resveratrol and tannins. Gene replacement mutants in the Bclcc1 and Bclcc2 gene were made to perform a functional analysis. Only Bclcc2 replacement mutants were incapable of converting both resveratrol and tannins. When grown on resveratrol, both the wild type and the Bclcc1 replacement mutant showed inhibited growth, whereas Bclcc2 replacement mutants were unaffected. Thus, contrary to the current theory, BcLCC2 does not detoxify resveratrol but, rather, converts it into compounds that are more toxic for the fungus itself. The Bclcc2 gene was expressed during infection of B. cinerea on a resveratrol‐producing host plant, but Bclcc2 replacement mutants were as virulent as the wild‐type strain on various hosts. The activation of a plant secondary metabolite by a pathogen introduces a new dimension to plant–pathogen interactions and the phytoalexin concept.


Fungal Diversity | 2014

One stop shop: backbones trees for important phytopathogenic genera: I (2014)

Kevin D. Hyde; R. Henrik Nilsson; S. Aisyah Alias; Hiran A. Ariyawansa; Jaime E. Blair; Lei Cai; Arthur W.A.M. de Cock; Asha J. Dissanayake; Sally L. Glockling; Ishani D. Goonasekara; Michał Gorczak; Matthias Hahn; Ruvishika S. Jayawardena; Jan A. L. van Kan; Matthew H. Laurence; C. André Lévesque; Xinghong Li; Jian-Kui Liu; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Frank N. Martin; Eric H. C. McKenzie; Alistair R. McTaggart; Peter E. Mortimer; Prakash V. R. Nair; Julia Pawłowska; Tara L. Rintoul; Roger G. Shivas; Christoffel F. J. Spies; Brett A. Summerell

Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.


Plant Physiology | 2014

Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1

Lisha Zhang; Ilona Kars; Bert Essenstam; Thomas W. H. Liebrand; Lia Wagemakers; Joyce Elberse; Panagiota Tagkalaki; Devlin Tjoitang; Guido Van den Ackerveken; Jan A. L. van Kan

Fungal pectin-degrading enzymes act as microbe-associated molecular patterns that are recognized by a pattern recognition receptor from Arabidopsis. Plants perceive microbial invaders using pattern recognition receptors that recognize microbe-associated molecular patterns. In this study, we identified RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 (RBPG1), an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like protein, AtRLP42, that recognizes fungal endopolygalacturonases (PGs) and acts as a novel microbe-associated molecular pattern receptor. RBPG1 recognizes several PGs from the plant pathogen Botrytis cinerea as well as one from the saprotroph Aspergillus niger. Infiltration of B. cinerea PGs into Arabidopsis accession Columbia induced a necrotic response, whereas accession Brno (Br-0) showed no symptoms. A map-based cloning strategy, combined with comparative and functional genomics, led to the identification of the Columbia RBPG1 gene and showed that this gene is essential for the responsiveness of Arabidopsis to the PGs. Transformation of RBPG1 into accession Br-0 resulted in a gain of PG responsiveness. Transgenic Br-0 plants expressing RBPG1 were equally susceptible as the recipient Br-0 to the necrotroph B. cinerea and to the biotroph Hyaloperonospora arabidopsidis. Pretreating leaves of the transgenic plants with a PG resulted in increased resistance to H. arabidopsidis. Coimmunoprecipitation experiments demonstrated that RBPG1 and PG form a complex in Nicotiana benthamiana, which also involves the Arabidopsis leucine-rich repeat receptor-like protein SOBIR1 (for SUPPRESSOR OF BIR1). sobir1 mutant plants did not induce necrosis in response to PGs and were compromised in PG-induced resistance to H. arabidopsidis.


The Mycota XI: Agricultural Applications | 2002

The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens

Arjen ten Have; Klaus B. Tenberge; Jacques A. E. Benen; Paul Tudzynski; Jaap Visser; Jan A. L. van Kan

The plant cell wall functions as a barrier to biotic and abiotic agents. Plant pathogenic bacteria and fungi produce cell wall degrading enzymes (CWDEs) which are believed to degrade this barrier, thereby facilitating both inter- and intracellular growth and providing nutrients to the invader. A pectate lyase from the bacterium Erwinia chrysanthemi was the first CWDE that was shown to be required for full virulence (Roeder and Colmer 1985). Subsequent molecular genetic studies have shown that many other bacterial CWDEs are virulence factors (reviewed by Hugouvieux-Cotte-Pattat et al. 1996). It took many years before similar evidence was obtained for the involvement of fungal CWDEs in pathogenesis, in spite of several efforts (reviewed by Walton 1994; Annis and Goodwin 1997). Eventually, an endopolygalacturonase from Aspergillus fiavus was shown to play a role in the invasion of cotton bolls (Shieh et al. 1997).

Collaboration


Dive into the Jan A. L. van Kan's collaboration.

Top Co-Authors

Avatar

Arjen ten Have

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Lia Wagemakers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Martijn Staats

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. Schouten

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Peter van Baarlen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ilona Kars

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Lisha Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Razak B. Terhem

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge