Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Albert Kuivenhoven is active.

Publication


Featured researches published by Jan Albert Kuivenhoven.


European Heart Journal | 2010

Lipoprotein(a) as a cardiovascular risk factor: current status

Børge G. Nordestgaard; M. John Chapman; Kausik K. Ray; Jan Borén; Felicita Andreotti; Gerald F. Watts; Henry N. Ginsberg; Pierre Amarenco; Alberico L. Catapano; Olivier S. Descamps; Edward A. Fisher; Petri T. Kovanen; Jan Albert Kuivenhoven; Philippe Lesnik; Luis Masana; Zeljko Reiner; Marja-Riitta Taskinen; Lale Tokgozoglu; Anne Tybjærg-Hansen

Aims The aims of the study were, first, to critically evaluate lipoprotein(a) [Lp(a)] as a cardiovascular risk factor and, second, to advise on screening for elevated plasma Lp(a), on desirable levels, and on therapeutic strategies. Methods and results The robust and specific association between elevated Lp(a) levels and increased cardiovascular disease (CVD)/coronary heart disease (CHD) risk, together with recent genetic findings, indicates that elevated Lp(a), like elevated LDL-cholesterol, is causally related to premature CVD/CHD. The association is continuous without a threshold or dependence on LDL- or non-HDL-cholesterol levels. Mechanistically, elevated Lp(a) levels may either induce a prothrombotic/anti-fibrinolytic effect as apolipoprotein(a) resembles both plasminogen and plasmin but has no fibrinolytic activity, or may accelerate atherosclerosis because, like LDL, the Lp(a) particle is cholesterol-rich, or both. We advise that Lp(a) be measured once, using an isoform-insensitive assay, in subjects at intermediate or high CVD/CHD risk with premature CVD, familial hypercholesterolaemia, a family history of premature CVD and/or elevated Lp(a), recurrent CVD despite statin treatment, ≥3% 10-year risk of fatal CVD according to European guidelines, and/or ≥10% 10-year risk of fatal + non-fatal CHD according to US guidelines. As a secondary priority after LDL-cholesterol reduction, we recommend a desirable level for Lp(a) <80th percentile (less than ∼50 mg/dL). Treatment should primarily be niacin 1–3 g/day, as a meta-analysis of randomized, controlled intervention trials demonstrates reduced CVD by niacin treatment. In extreme cases, LDL-apheresis is efficacious in removing Lp(a). Conclusion We recommend screening for elevated Lp(a) in those at intermediate or high CVD/CHD risk, a desirable level <50 mg/dL as a function of global cardiovascular risk, and use of niacin for Lp(a) and CVD/CHD risk reduction.


European Heart Journal | 2011

Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

M. John Chapman; Henry N. Ginsberg; Pierre Amarenco; Felicita Andreotti; Jan Borén; Alberico L. Catapano; Olivier S. Descamps; Edward A. Fisher; Petri T. Kovanen; Jan Albert Kuivenhoven; Philippe Lesnik; Luis Masana; Børge G. Nordestgaard; Kausik K. Ray; Zeljko Reiner; Marja-Riitta Taskinen; Lale Tokgozoglu; Anne Tybjærg-Hansen; Gerald F. Watts

Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal.


European Heart Journal | 2014

Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society

Marina Cuchel; Eric Bruckert; Henry N. Ginsberg; Raal Fj; Raul D. Santos; Robert A. Hegele; Jan Albert Kuivenhoven; Børge G. Nordestgaard; Olivier S. Descamps; Elisabeth Steinhagen-Thiessen; Anne Tybjærg-Hansen; Gerald F. Watts; Maurizio Averna; Catherine Boileau; Jan Borén; Alberico L. Catapano; Joep C. Defesche; G. Kees Hovingh; Steve E. Humphries; Petri T. Kovanen; Luis Masana; Päivi Pajukanta; Parhofer Kg; Kausik K. Ray; Anton F. H. Stalenhoef; Erik S. G. Stroes; Marja-Riitta Taskinen; Albert Wiegman; Olov Wiklund; M. John Chapman

Aims Homozygous familial hypercholesterolaemia (HoFH) is a rare life-threatening condition characterized by markedly elevated circulating levels of low-density lipoprotein cholesterol (LDL-C) and accelerated, premature atherosclerotic cardiovascular disease (ACVD). Given recent insights into the heterogeneity of genetic defects and clinical phenotype of HoFH, and the availability of new therapeutic options, this Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society (EAS) critically reviewed available data with the aim of providing clinical guidance for the recognition and management of HoFH. Methods and results Early diagnosis of HoFH and prompt initiation of diet and lipid-lowering therapy are critical. Genetic testing may provide a definitive diagnosis, but if unavailable, markedly elevated LDL-C levels together with cutaneous or tendon xanthomas before 10 years, or untreated elevated LDL-C levels consistent with heterozygous FH in both parents, are suggestive of HoFH. We recommend that patients with suspected HoFH are promptly referred to specialist centres for a comprehensive ACVD evaluation and clinical management. Lifestyle intervention and maximal statin therapy are the mainstays of treatment, ideally started in the first year of life or at an initial diagnosis, often with ezetimibe and other lipid-modifying therapy. As patients rarely achieve LDL-C targets, adjunctive lipoprotein apheresis is recommended where available, preferably started by age 5 and no later than 8 years. The number of therapeutic approaches has increased following approval of lomitapide and mipomersen for HoFH. Given the severity of ACVD, we recommend regular follow-up, including Doppler echocardiographic evaluation of the heart and aorta annually, stress testing and, if available, computed tomography coronary angiography every 5 years, or less if deemed necessary. Conclusion This EAS Consensus Panel highlights the need for early identification of HoFH patients, prompt referral to specialized centres, and early initiation of appropriate treatment. These recommendations offer guidance for a wide spectrum of clinicians who are often the first to identify patients with suspected HoFH.


Journal of Clinical Investigation | 2011

ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice

Andrew J. Murphy; Mani Akhtari; Sonia Tolani; Tamara A. Pagler; Nora Bijl; Chaoling Kuo; Mi Wang; Marie Sanson; Sandra Abramowicz; Carrie L. Welch; Andrea E. Bochem; Jan Albert Kuivenhoven; Laurent Yvan-Charvet; Alan R. Tall

Leukocytosis is associated with increased cardiovascular disease risk in humans and develops in hypercholesterolemic atherosclerotic animal models. Leukocytosis is associated with the proliferation of hematopoietic stem and multipotential progenitor cells (HSPCs) in mice with deficiencies of the cholesterol efflux-promoting ABC transporters ABCA1 and ABCG1 in BM cells. Here, we have determined the role of endogenous apolipoprotein-mediated cholesterol efflux pathways in these processes. In Apoe⁻/⁻ mice fed a chow or Western- type diet, monocytosis and neutrophilia developed in association with the proliferation and expansion of HSPCs in the BM. In contrast, Apoa1⁻/⁻ mice showed no monocytosis compared with controls. ApoE was found on the surface of HSPCs, in a proteoglycan-bound pool, where it acted in an ABCA1- and ABCG1-dependent fashion to decrease cell proliferation. Accordingly, competitive BM transplantation experiments showed that ApoE acted cell autonomously to control HSPC proliferation, monocytosis, neutrophilia, and monocyte accumulation in atherosclerotic lesions. Infusion of reconstituted HDL and LXR activator treatment each reduced HSPC proliferation and monocytosis in Apoe⁻/⁻ mice. These studies suggest a specific role for proteoglycanbound ApoE at the surface of HSPCs to promote cholesterol efflux via ABCA1/ABCG1 and decrease cell proliferation, monocytosis, and atherosclerosis. Although endogenous apoA-I was ineffective, pharmacologic approaches to increasing cholesterol efflux suppressed stem cell proliferative responses.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Lipoprotein Lipase S447X: A Naturally Occurring Gain-of-Function Mutation

Jaap Rip; Melchior C. Nierman; Colin Ross; Jan Wouter Jukema; Michael R. Hayden; John J. P. Kastelein; Erik S.G. Stroes; Jan Albert Kuivenhoven

Lipoprotein lipase (LPL) hydrolyzes triglycerides in the circulation and promotes the hepatic uptake of remnant lipoproteins. Since the gene was cloned in 1989, more than 100 LPL gene mutations have been identified, the majority of which cause loss of enzymatic function. In contrast to this, the naturally occurring LPLS447X variant is associated with increased lipolytic function and an anti-atherogenic lipid profile and can therefore be regarded as a gain-of-function mutation. This notion combined with the facts that 20% of the general population carries this prematurely truncated LPL and that it may protect against cardiovascular disease has led to extensive clinical and basic research into this frequent LPL mutant. It is only until recently that we begin to understand the molecular mechanisms that underlie the beneficial effects associated with LPLS447X. This review summarizes the current literature on this interesting LPL variant.


European Journal of Clinical Investigation | 2004

Cholesteryl ester transfer protein concentration is associated with progression of atherosclerosis and response to pravastatin in men with coronary artery disease (REGRESS)

Anke H.E.M. Klerkx; G.J. de Grooth; Aeilko H. Zwinderman; J. W. Jukema; Jan Albert Kuivenhoven; J.J.P. Kastelein

Background  The TaqIB polymorphism in the cholesteryl ester transfer protein (CETP) gene is associated with HDL‐C, progression of coronary artery disease (CAD) and response to pravastatin treatment in men with angiographically proven CAD (REGRESS). We hypothesized that differences in CETP concentration could explain these associations and now investigated whether CETP concentration is an independent determinant of these parameters.


Circulation | 2007

Apolipoprotein A-II is inversely associated with risk of future coronary artery disease

Rakesh S. Birjmohun; Geesje M. Dallinga-Thie; Jan Albert Kuivenhoven; Erik S.G. Stroes; James D. Otvos; Nicholas J. Wareham; Robert Luben; John J. P. Kastelein; Kay-Tee Khaw; S. Matthijs Boekholdt

Background— Although the vasculoprotective effects of apolipoprotein A-I (apoA-I), the major protein associated with high-density lipoprotein, have been universally accepted, apoA-II has been suggested to have poor antiatherogenic or even proatherogenic properties. To study this suggestion more closely, we evaluated how serum levels of apoA-II and apoA-I relate to the risk of future coronary artery disease (CAD) in a large, prospective study. Methods and Results— We performed a nested case-control study in the prospective EPIC-Norfolk (European Prospective Investigation into Cancer and Nutrition–Norfolk) cohort. Case subjects (n=912) were apparently healthy men and women aged 45 to 79 years who developed fatal or nonfatal CAD during a mean follow-up of 6 years. Control subjects (n=1635) were matched by age, gender, and enrollment time. Conditional logistic regression was used to quantify the relationship between serum apoA-II levels and risk of CAD. Serum apoA-II concentration was significantly lower in case subjects (34.5±6.3 mg/dL) than in control subjects (35.2±5.8 mg/dL) and was inversely associated with risk of CAD, such that patients in the upper quartile (>38.1 mg/dL) had an odds ratio of 0.59 (95% confidence interval 0.46 to 0.76) versus those in the lowest quartile (<31.1 mg/dL; P for linearity <0.0001). After adjustment for fasting time, alcohol use, and cardiovascular risk factors (systolic blood pressure, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, smoking, diabetes mellitus, and C-reactive protein), the corresponding risk estimate was 0.48 (95% confidence interval 0.34 to 0.67, P for linearity <0.0001). Surprisingly, additional adjustment for serum apoA-I levels did not affect risk prediction of apoA-II for future CAD (odds ratio 0.49, 95% confidence interval 0.34 to 0.68, P for linearity <0.0001). Also, after adjustment for high-density lipoprotein particle number and size, apoA-II was still associated with the risk of future CAD (odds ratio 0.62, 95% confidence interval 0.43 to 0.90, P for linearity 0.02). Conclusions— ApoA-II is associated with a decreased risk of future CAD in apparently healthy people. These findings imply that apoA-II itself exerts effects on specific antiatherogenic pathways. On the basis of these findings, discussion of the potential proatherogenic effects of apoA-II can cease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

High-Density Lipoprotein Attenuates Inflammation and Coagulation Response on Endotoxin Challenge in Humans

Rakesh S. Birjmohun; Sander I. van Leuven; Johannes H.M. Levels; Cornelis van 't Veer; Jan Albert Kuivenhoven; Joost C. M. Meijers; Marcel Levi; John J. P. Kastelein; Tom van der Poll; Erik S.G. Stroes

Objective—Low high-density lipoprotein (HDL) cholesterol is a strong independent cardiovascular risk factor, which has been attributed to its role in reverse cholesterol transport. Whereas HDL also has potent antiinflammatory effects, the relevance of this property remains to be established in humans. In the present study, we evaluated whether there is a relation between HDL and sensitivity toward a low-dose endotoxin challenge. Methods and Results—Thirteen healthy men with genetically determined isolated low HDL cholesterol (averaging 0.7±0.1 mmol/L) and 14 age- and body weight-matched healthy men with normal/high HDL cholesterol levels (1.9±0.4 mmol/L) were challenged with low-dose endotoxin intravenously (1 ng/kg body weight). The incidence and severity of endotoxin-associated clinical symptoms was increased in the low HDL group. Accordingly, both the inflammatory response (tumor necrosis factor-&agr;, IL-1&bgr;, IL-6, IL-8, and monocyte chemoattractant protein-1) as well as thrombin generation (prothrombin activation fragments F1+2) were significantly increased in the low HDL group on endotoxin challenge. Conclusions—Low HDL in healthy males is associated with increased sensitivity toward inflammatory stimuli as reflected by enhanced inflammatory and coagulation responses on endotoxin challenge. These antiinflammatory effects of HDL in humans may lend further support to HDL-increasing interventions, particularly in proinflammatory conditions, such as acute coronary syndromes.


Journal of Clinical Investigation | 1999

A vascular bed–specific pathway regulates cardiac expression of endothelial nitric oxide synthase

Pascale V. Guillot; Jason Guan; Lixin Liu; Jan Albert Kuivenhoven; Robert D. Rosenberg; William C. Sessa; William C. Aird

The endothelial nitric oxide synthase (eNOS) gene is induced by a variety of extracellular signals under both in vitro and in vivo conditions. To gain insight into the mechanisms underlying environmental regulation of eNos expression, transgenic mice were generated with the 1,600-bp 5′ flanking region of the human eNos promoter coupled to the coding region of the LacZ gene. In multiple independent lines of mice, transgene expression was detected within the endothelium of the brain, heart, skeletal muscle, and aorta. β-galactosidase activity was consistently absent in the vascular beds of the liver, kidney, and spleen. In stable transfection assays of murine endothelial progenitor cells, the 1,600-bp promoter region was selectively induced by conditioned media from cardiac myocytes, skeletal myocytes, and brain astrocytes. Cardiac myocyte–mediated induction was partly abrogated by neutralizing anti–platelet-derived growth factor (PDGF) antibodies. In addition, promoter activity was upregulated by PDGF-AB. Analysis of promoter deletions revealed that a PDGF response element lies between –744 and –1,600 relative to the start site of transcription, whereas a PDGF-independent cardiac myocyte response element is present within the first 166 bp of the 5′ flanking region. Taken together, these results suggest that the eNos gene is regulated in the cardiac endothelium by both a PDGF-dependent and PDGF-independent microvascular bed–specific signaling pathway.


Journal of Clinical Investigation | 1996

An Intronic Mutation in a Lariat Branchpoint Sequence Is a Direct Cause of an Inherited Human Disorder (Fish-Eye Disease)

Jan Albert Kuivenhoven; H Weibusch; P.H. Pritchard; H. Funke; R Benne; G. Assmann; J.J.P. Kastelein

The first step in the splicing of an intron from nuclear precursors of mRNA results in the formation of a lariat structure. A distinct intronic nucleotide sequence, known as the branchpoint region, plays a central role in this process. We here describe a point mutation in such a sequence. Three sisters were shown to suffer from fish-eye disease (FED), a disorder which is caused by mutations in the gene coding for lecithin:cholesterol acyltransferase (LCAT). Sequencing of the LCAT gene of all three probands revealed compound heterozygosity for a missense mutation in exon 4 which is reported to underlie the FED phenotype, and a point mutation located in intron 4 (IVS4:T-22C). By performing in vitro expression of LCAT minigenes and reverse transcriptase PCR on mRNA isolated from leukocytes of the patient, this gene defect was shown to cause a null allele as the result of complete intron retention. In conclusion, we demonstrated that a point mutation in a lariat branchpoint consensus sequence causes a null allele in a patient with FED. In addition, our finding illustrates the importance of this sequence for normal human mRNA processing. Finally, this report provides a widely applicable strategy which ensures fast and effective screening for intronic defects that underlie differential gene expression.

Collaboration


Dive into the Jan Albert Kuivenhoven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. Hayden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Colin Ross

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaap Rip

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge