Jan Benedikt
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Benedikt.
New Journal of Physics | 2010
Dirk Ellerweg; Jan Benedikt; A von Keudell; N. Knake; V Schulz-von der Gathen
The effluent of a microscale atmospheric pressure plasma jet (μ-APPJ) operated in helium with a small admixture of molecular oxygen (<1.6%) has been analyzed by means of two independent diagnostics, quantitative molecular beam mass spectrometry (MBMS) and two-photon absorption laser-induced fluorescence spectroscopy (TALIF). The atomic oxygen density, the ozone density and the depletion of molecular oxygen have been measured by MBMS and the atomic oxygen density has been validated by TALIF. Absolute atomic oxygen densities in the effluent up to 4.7×1015 cm-3 could be measured with a very good agreement between both diagnostics. In addition, ozone densities in the effluent up to 1.4×1015 cm-3 and an O2 depletion up to 10% could be measured by MBMS. The atomic oxygen density shows a maximum value at an O2 admixture of 0.6%, whereas the ozone density continues to increase toward higher O2 admixtures. With increasing distance from the jet, the atomic oxygen density decreases but is still detectable at a distance of 30 mm. The ozone density increases with distance, saturating at a distance of 40 mm. By applying higher powers to the μ-APPJ, the atomic oxygen density increases linearly whereas the ozone density exhibits a maximum.
Applied Physics Letters | 2006
Jan Benedikt; K. Focke; A. Yanguas-Gil; A von Keudell
An atmospheric pressure microplasma jet is developed for depositing homogeneous thin films from C2H2. The adjustment of the gas flow through the microplasma jet assures optimal flow conditions as well as minimizes deposition inside the jet. In addition, the formation of an argon boundary layer surrounding the emerging plasma beam separates the ambient atmosphere from the flow of growth precursor. Thereby the incorporation of nitrogen and oxygen from the ambient atmosphere into the deposited film is suppressed. Soft polymerlike hydrogenated amorphous carbon (a-C:H) films are deposited at the rate of a few nm/s on the area of a few square millimeters.
Journal of Physics D | 2010
Jan Benedikt
Reactive plasmas are a well-known tool for material synthesis and surface modification. They offer a unique combination of non-equilibrium electron and ion driven plasma chemistry, energetic ions accelerated in the plasma sheath at the plasma–surface interface, high fluxes of reactive species towards surfaces and a friendly environment for thermolabile objects. Additionally, small negatively charged clusters can be generated, because they are confined in the positive plasma potential. Plasmas in hydrocarbon gases, and especially in acetylene, are a good example for the discussion of different plasma-chemical processes. These plasmas are involved in a plethora of possible applications ranging from fuel conversion to formation of single wall carbon nanotubes. This paper provides a concise overview of plasma-chemical reactions (PCRs) in low pressure reactive plasmas and discusses possible experimental and theoretical methods for the investigation of their plasma chemistry. An up-to-date summary of the knowledge about low pressure acetylene plasmas is given and two particular examples are discussed in detail: (a) Ar/C2H2 expanding thermal plasmas with electron temperatures below 0.3 eV and with a plasma chemistry initiated by charge transfer reactions and (b) radio frequency C2H2 plasmas, in which the energetic electrons mainly control PCRs. (Some figures in this article are in colour only in the electronic version)
Journal of Applied Physics | 2007
A. Yanguas-Gil; K. Focke; Jan Benedikt; A von Keudell
A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar∕CH4 and Ar∕C2H2 mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250μm. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56MHz, and rms voltages around 200–250V and rms currents of 0.4–0.6A are obtained. Electron densities around 8×1020m−3 and gas temperatures lower than 400K have been measured using optical emission spectroscopy for main flows of 3slm and inner capillary flows of 160SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar∕CH4 and Ar∕C2H2 plasmas, where no CO and CN species are present and the optical emission sp...
Journal of Physics D | 2012
Jan Benedikt; Ante Hecimovic; Dirk Ellerweg; A von Keudell
Reactive plasmas are highly valued for their ability to produce large amounts of reactive radicals and of energetic ions bombarding surrounding surfaces. The non-equilibrium electron driven plasma chemistry is utilized in many applications such as anisotropic etching or deposition of thin films of high-quality materials with unique properties. However, the non-equilibrium character and the high power densities make plasmas very complex and hard to understand. Mass spectrometry (MS) is a very versatile diagnostic method, which has, therefore, a prominent role in the characterization of reactive plasmas. It can access almost all plasma generated species: stable gas-phase products, reactive radicals, positive and negative ions or even internally excited species such as metastables. It can provide absolute densities of neutral particles or energy distribution functions of energetic ions. In particular, plasmas with a rich chemistry, such as hydrocarbon plasmas, could not be understood without MS. This review focuses on quadrupole MS with an electron impact ionization ion source as the most common MS technique applied in plasma analysis. Necessary information for the understanding of this diagnostic and its application and for the proper design and calibration procedure of an MS diagnostic system for quantitative plasma analysis is provided. Important differences between measurements of neutral particles and energetic ions and between the analysis of low pressure and atmospheric pressure plasmas are described and discussed in detail. Moreover, MS-measured ion energy distribution functions in different discharges are discussed and the ability of MS to analyse these distribution functions with time resolution of several microseconds is presented.
Journal of the Royal Society Interface | 2013
Jan Wilm Lackmann; Simon Schneider; Eugen Edengeiser; Fabian Jarzina; Steffen Brinckmann; Elena Steinborn; Martina Havenith; Jan Benedikt; Julia E. Bandow
Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.
Journal of Physics D | 2008
V. Raballand; Jan Benedikt; Joachim Wunderlich; A von Keudell
The inactivation of spores of Bacillus atrophaeus and of Aspergillus niger using beams of argon ions, of oxygen molecules and of oxygen atoms is studied. Thereby, the conditions occurring in oxygen containing low pressure plasmas are mimicked and fundamental inactivation mechanisms can be revealed. It is shown that the impact of O atoms has no effect on the viability of the spores and that no etching of the spore coat occurs up to an O atom fluence of 3.5 ? 1019?cm?2. The impact of argon ions with an energy of 200?eV does not cause significant erosion for fluences up to 1.15 ? 1018?cm?2. However, the combined impact of argon ions and oxygen molecules or atoms causes significant etching of the spores and significant inactivation. This is explained by the process of chemical sputtering, where an ion-induced defect at the surface of the spore reacts with either the incident bi-radical O2 or with an incident O atom. This leads to the formation of CO, CO2 and H2O and thus to erosion.
Journal of Applied Physics | 2009
V. Raballand; Jan Benedikt; S. Hoffmann; M. Zimmermann; A von Keudell
Organic and inorganic silicon dioxide films have been deposited by means of an atmospheric pressure microplasma jet. Tetramethylsilane (TMS), oxygen, and hexamethyldisiloxane (HMDSO) are injected into argon as plasma forming gases. In the case of TMS injection, inorganic films are deposited if an admixture of oxygen is used. In the case of HMDSO injection, inorganic films can be deposited at room temperature even without any oxygen admixture: at low HMDSO flow rates [ 0.1 SCCM,>32 ppm), SiOxCyHz with up to 21% of carbon are obtained. The transition from organic to inorganic film is confirmed by Fourier transform infrared spectroscopy. The deposition of inorganic SiO2 films from HMDSO without any oxygen admixture is explained by an ion-induced polymerization scheme of HMDSO.
Applied Physics Letters | 2008
V. Raballand; Jan Benedikt; A von Keudell
Carbon-free silicon dioxide has been deposited at room temperature by injection of pure hexamethyldisiloxane (HMDSO) into an atmospheric pressure microplasma jet from argon. At low HMDSO flow rates [ 0.1SCCM), SiOxCyHz films with a carbon content of up to 21% are obtained. The transition between organic to inorganic film is confirmed by Fourier transformed infrared spectroscopy. The deposition of inorganic films without oxygen admixture is explained by an ion-induced polymerization scheme of HMDSO.
Journal of Physics D | 2011
Simon Schneider; Jan-Wilm Lackmann; Franz Narberhaus; Julia E. Bandow; Benjamin Denis; Jan Benedikt
Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a microscale atmospheric pressure plasma jet (μ-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown and discussed. A simple model of the He gas flow and reaction kinetics of oxygen atoms in the gas phase and at the surface is used to provide a better understanding of the processes in the plasma effluent. The new jet modification, called X-Jet for its appearance, will simplify the investigation of interaction mechanisms of atmospheric pressure plasmas with biological samples.