Jan Bogerd
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Bogerd.
General and Comparative Endocrinology | 2010
Berta Levavi-Sivan; Jan Bogerd; Evaristo L. Mañanós; Ana M. Gómez; Jean-Jacques Lareyre
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Journal of Molecular Evolution | 1999
Patrick J. Babin; Jan Bogerd; Frank P. Kooiman; Wil J.A. Van Marrewijk; Dick J. Van der Horst
Abstract. Large lipid transfer proteins (LLTP) are nonexchangeable apolipoproteins and intracellular lipid-exchange proteins involved in the assembly, secretion, and metabolism of lipoproteins. We have identified contiguous conserved sequence motifs in alignments of insect apolipophorin II/I precursor (apoLp-II/I), human apolipoprotein B (apoB), invertebrate and vertebrate vitellogenins (VTG), and the large subunit of mammalian microsomal triglyceride transfer protein (MTP). Conserved motifs present in the N-terminal part of nonexchangeable apolipoproteins encompass almost completely the large subunit of MTP, suggesting a derivation from a common ancestral functional unit, termed large lipid transfer (LLT) module. Divergence of LLTP from a common ancestor is supported by (1) the statistical significance of the combined match scores obtained after motif-based database searches, (2) the presence of several identical amino acid residues in all LLTP sequences currently available, (3) the conservation of hydrophobic clusters in an α-helical domain, (4) the phylogenetic analysis of the conserved sequences related to the von Willebrand factor D (VWD) module identified in nonexchangeable apolipoproteins, and (5) the presence of four and one ancestral exon boundaries in the LLT and VWD modules, respectively. Our data indicate that the genes coding for apoLp-II/I, apoB, VTG, and the MTP large subunit are members of the same multigene superfamily. LLTP have emerged from an ancestral molecule designed to ensure a pivotal event in the intracellular and extracellular transfer of lipids and liposoluble substances.
Biology of Reproduction | 2001
Jan Bogerd; Marion Blomenröhr; Eva Andersson; H H A G M van der Putten; C.P. Tensen; Henry F. Vischer; Joke C. M. Granneman; Coby Janssen-Dommerholt; H.J.Th. Goos; Rüdiger W. Schulz
Abstract A putative FSH receptor (FSH-R) cDNA was cloned from African catfish testis. Alignment of the deduced amino acid sequence with other (putative) glycoprotein hormone receptors and analysis of the African catfish gene indicated that the cloned receptor belonged to the FSH receptor subfamily. Catfish FSH-R (cfFSH-R) mRNA expression was observed in testis and ovary; abundant mRNA expression was also detected in seminal vesicles. The isolated cDNA encoded a functional receptor since its transient expression in human embryonic kidney (HEK-T) 293 cells resulted in ligand-dependent cAMP production. Remarkably, African catfish LH (cfLH; the catfish FSH-like gonadotropin has not been purified yet) had the highest potency in this system. From the other ligands tested, only human recombinant FSH (hrFSH) was active, showing a fourfold lower potency than cfLH, while hCG and human TSH (hTSH) were inactive. Human CG (as well as cfLH, hrFSH, eCG, but not hTSH) stimulated testicular androgen secretion in vitro but seemed to be unable to bind to the cfFSH-R. However, it was known that hCG is biologically active in African catfish (e.g., induction of ovulation). This indicated that an LH receptor is also expressed in African catfish testis. We conclude that we have cloned a cDNA encoding a functional FSH-R from African catfish testis. The cfFSH-R appears to be less discriminatory for its species-specific LH than its avian and mammalian counterparts.
Biology of Reproduction | 2009
Marcelo C. Leal; Edson R. Cardoso; Rafael H. Nóbrega; Sergio Ricardo Batlouni; Jan Bogerd; Luiz R. França; Rüdiger W. Schulz
Abstract The zebrafish has become an important vertebrate model for basic and biomedical research, including the research field of the biology of reproduction. However, very few morphological and stereological data are available regarding zebrafish testis structure and spermatogenesis. In this careful histomorphometric evaluation of the testis, we studied spermatogonial cells using molecular markers, determined the combined duration of meiotic and spermiogenic phases, and examined the formation of the Sertoli cell barrier (tight junctions). We found at least nine spermatogonial generations and propose a morphology-based nomenclature for spermatogonial generations that is compatible with the one used in higher vertebrates. The number of germ cells per cyst increased dramatically (1 to ∼1360 cells) from undifferentiated spermatogonia type A to early spermatids. The combined duration of meiotic and spermiogenic phases is approximately 6 days, one of the shorter periods among the teleost fish investigated to date. The number of Sertoli cells per cyst increased 9-fold during the maturational cycle of spermatogenic cysts and stabilized in the meiotic phase at a ratio of approximately 100 early spermatids per Sertoli cell (Sertoli cell efficiency). Similarly to mammals, Sertoli cell proliferation ceased in the meiotic phase, coinciding with the formation of tight junctions between Sertoli cells. Hence, the events taking place during puberty in the germinal epithelium of mammals seem to recapitulate the “life history” of each individual spermatogenic cyst in zebrafish.
Comparative Biochemistry and Physiology B | 2001
Rüdiger W. Schulz; Henry F. Vischer; J.E.B. Cavaco; Eduarda M. Santos; Charles R. Tyler; H.J.Th. Goos; Jan Bogerd
The pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) regulate steroidogenesis and spermatogenesis by activating receptors expressed by Leydig cells (LH receptor) and Sertoli cells (FSH receptor), respectively. This concept is also valid in fish, although the piscine receptors may be less discriminatory than their mammalian counterparts. The main biological activity of LH is to regulate Leydig-cell steroid production. Steroidogenesis is moreover modulated in an autoregulatory manner by androgens. The male sex steroids (testosterone in higher vertebrates, 11-ketotestosterone in fish) are required for spermatogenesis, but their mode of action has remained obscure. While piscine FSH also appears to have steroidogenic activity, specific roles have not been described yet in the testis. The feedback of androgens on gonadotrophs presents a complex pattern. Aromatizable androgens/estrogens stimulate LH synthesis in juvenile fish; this effect fades out during maturation. This positive feedback on LH synthesis is balanced by a negative feedback on LH release, which may involve GnRH neurones. While the role of GnRH as LH secretagogue is evident, we have found no indication in adult male African catfish for a direct, GnRH-mediated stimulation of LH synthesis. The limited available information at present precludes a generalized view on the testicular feedback on FSH.
Biology of Reproduction | 2003
Henry F. Vischer; Jan Bogerd
Abstract A cDNA encoding a putative African catfish (Clarias gariepinus) gonadal LH receptor (cfLH-R) has been cloned. Multiple sequence alignment of the deduced amino acid sequence revealed that the cfLH-R had the highest identity with vertebrate LH receptors (>50%). Overall sequence identity between the cfLH-R and the African catfish FSH receptor (cfFSH-R) is 47%. Sequence analysis of part of the cfLH-R gene revealed the presence of an intron typically found in other vertebrate LH-R genes. Abundant cfLH-R mRNA expression was detected in ovary and testis as well as in head-kidney (the adrenal homologue in fish). Other tissues, such as muscle, brain, cerebellum, stomach, heart, and seminal vesicles, also contained detectable cfLH-R mRNA. Transient expression of the cfLH-R in HEK-T 293 cells resulted in significantly increased basal cAMP levels in the absence of gonadotropic hormone. The cAMP levels could be further elevated in response to catfish LH, salmon LH, human LH, human choriogonadotropin, and human FSH. Salmon FSH and human TSH, however, were inactive. We conclude that we have cloned a cDNA encoding the LH-R of the African catfish. This receptor displays constitutive activity but is still responsive to additional ligand-induced activation.
Reproduction | 2008
P. P. De Waal; Deshou Wang; Wouter Nijenhuis; Rüdiger W. Schulz; Jan Bogerd
The biological activity of androgens, important for male sexual differentiation and development, is mediated by the androgen receptor (AR) that binds to specific DNA recognition sites regulating the transcription of androgen target genes. We investigated androgen production by adult zebrafish testis tissue, and identified 11beta-hydroxyandrostenedione, 11-ketoandrostenedione (OA), and 11-ketotestosterone (11-KT) as main products, and hence potential ligands, for the zebrafish Ar. These androgens were then included in the pharmacological characterization of the zebrafish Ar. The zebrafish Ar responded well in terms of binding and transactivation to synthetic androgens as well as to testosterone and 11-KT, and reasonably well to OA and androstenedione. In situ hybridization analysis of zebrafish testis revealed that ar mRNA expression was detected in the subpopulation of Sertoli cells contacting early spermatogonia.
PLOS ONE | 2010
Rafael H. Nóbrega; Caaj Douwe Greebe; Henk J.G. van de Kant; Jan Bogerd; Luiz R. França; Rüdiger W. Schulz
Background Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate. Methodology/Principal Findings Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish. Conclusions/Significance We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs.
Endocrinology | 2010
Ángel García-López; Hugo R. de Jonge; Rafael H. Nóbrega; Paul P. de Waal; Wytske van Dijk; Wieger Hemrika; Geir Lasse Taranger; Jan Bogerd; Rüdiger W. Schulz
This study aimed to improve, using the zebrafish model, our understanding of the distinct roles of pituitary gonadotropins FSH and LH in regulating testis functions in teleost fish. We report, for the first time in a vertebrate species, that zebrafish Leydig cells as well as Sertoli cells express the mRNAs for both gonadotropin receptors (fshr and lhcgr). Although Leydig cell fshr expression has been reported in other piscine species and may be a common feature of teleost fish, Sertoli cell lhcgr expression has not been reported previously and might be related to the undifferentiated gonochoristic mode of gonadal sex differentiation in zebrafish. Both recombinant zebrafish (rzf) gonadotropins (i.e. rzfLH and rzfFSH) stimulated androgen release in vitro and in vivo, with rzfFSH being significantly more potent than rzfLH. Forskolin-induced adenylate cyclase activation mimicked, whereas the protein kinase A inhibitor H-89 significantly reduced, the gonadotropin-stimulated androgen release. Therefore, we conclude that both FSH receptor and LH/choriogonadotropin receptor signaling are predominantly mediated through the cAMP/protein kinase A pathway to promote steroid production. Despite this similarity, other downstream mechanisms seem to differ. For example, rzfFSH up-regulated the testicular mRNA levels of a number of steroidogenesis-related genes both in vitro and in vivo, whereas rzfLH or human chorionic gonadotropin did not. Although not fully understood at present, these differences could explain the capacity of FSH to support both steroidogenesis and spermatogenesis on a long-term basis, whereas LH-stimulated steroidogenesis might be a more acute process, possibly restricted to periods during which peak steroid levels are required.
Biology of Reproduction | 2010
Shi Xi Chen; Jan Bogerd; Ángel García-López; Hugo R. de Jonge; Paul P. de Waal; Wan S. Hong; Rüdiger W. Schulz
Abstract Progestagenic sex steroid hormones play critical roles in reproduction across vertebrates, including teleost fish. To further our understanding of how progesterone modulates testis functions in fish, we set out to clone a progesterone receptor (pgr) cDNA exhibiting nuclear hormone receptor features from zebrafish testis. The open reading frame of pgr consists of 1854 bp, coding for a 617-amino acid-long protein showing the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that zebrafish Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency. Expression of pgr mRNA: 1) appeared in embryos at 8 h after fertilization; 2) was significantly higher in developing ovary than in early transforming testis at 4 wk of age but vice versa in young adults at 12 wk of age, and thus resembling the expression pattern of the germ cell marker piwil1; and, 3) was restricted to Leydig and Sertoli cells in adult testis. Zebrafish testicular explants released DHP concentration dependently in response to high concentrations of recombinant zebrafish gonadotropins. In addition, DHP stimulated 11-ketotestosterone release from zebrafish testicular explants, but only in the presence of its immediate precursor, 11beta-hydroxytestosterone. This stimulatory activity was blocked by a Pgr antagonist (RU486), suggesting that 11beta-hydroxysteroid dehydrogenase activity was stimulated by DHP via Pgr. Our data suggest that DHP contributes to the regulation of Leydig cell steroidogenesis, and potentially—via Sertoli cells—also to germ cell differentiation in zebrafish testis.