Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Burghoorn is active.

Publication


Featured researches published by Jan Burghoorn.


The EMBO Journal | 1998

Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor.

Kürşad Turgay; Jeanette Hahn; Jan Burghoorn; David Dubnau

Competence is a physiological state, distinct from sporulation and vegetative growth, that enables cells to bind and internalize transforming DNA. The transcriptional regulator ComK drives the development of competence in Bacillus subtilis. ComK is directly required for its own transcription as well as for the transcription of the genes that encode DNA transport proteins. When ComK is sequestered by binding to a complex of the proteins MecA and ClpC, the positive feedback loop leading to ComK synthesis is interrupted. The small protein ComS, produced as a result of signaling by a quorum‐sensing two‐component regulatory pathway, triggers the release of ComK from the complex, enabling comK transcription to occur. We show here, based on in vivo and in vitro experiments, that ComK accumulation is also regulated by proteolysis and that binding to MecA targets ComK for degradation by the ClpP protease in association with ClpC. The release of ComK from binding by MecA and ClpC, which occurs when ComS is synthesized, protects ComK from proteolysis. Following this release, the rates of MecA and ComS degradation by ClpCP are increased in our in vitro system. In this novel system, MecA serves to recruit ComK to the ClpCP protease and connects ComK degradation to the quorum‐sensing signal‐transduction pathway, thereby regulating a key developmental process. This is the first regulated degradation system in which a specific targeting molecule serves such a function.


PLOS ONE | 2011

Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons.

Satu Massinen; Marie-Estelle Hokkanen; Hans Matsson; Kristiina Tammimies; Isabel Tapia-Páez; Vanina Dahlström-Heuser; Juha Kuja-Panula; Jan Burghoorn; Kristian Jeppsson; Peter Swoboda; Myriam Peyrard-Janvid; Rune Toftgård; Eero Castrén; Juha Kere

DCDC2 is one of the candidate susceptibility genes for dyslexia. It belongs to the superfamily of doublecortin domain containing proteins that bind to microtubules, and it has been shown to be involved in neuronal migration. We show that the Dcdc2 protein localizes to the primary cilium in primary rat hippocampal neurons and that it can be found within close proximity to the ciliary kinesin-2 subunit Kif3a. Overexpression of DCDC2 increases ciliary length and activates Shh signaling, whereas downregulation of Dcdc2 expression enhances Wnt signaling, consistent with a functional role in ciliary signaling. Moreover, DCDC2 overexpression in C. elegans causes an abnormal neuronal phenotype that can only be seen in ciliated neurons. Together our results suggest a potential role for DCDC2 in the structure and function of primary cilia.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mutation of the MAP kinase DYF-5 affects docking and undocking of kinesin-2 motors and reduces their speed in the cilia of Caenorhabditis elegans

Jan Burghoorn; Martijn P. J. Dekkers; Suzanne Rademakers; Ton de Jong; Rob Willemsen; Gert Jansen

In the cilia of the nematode Caenorhabditis elegans, anterograde intraflagellar transport (IFT) is mediated by two kinesin-2 complexes, kinesin II and OSM-3 kinesin. These complexes function together in the cilia middle segments, whereas OSM-3 alone mediates transport in the distal segments. Not much is known about the mechanisms that compartmentalize the kinesin-2 complexes or how transport by both kinesins is coordinated. Here, we identify DYF-5, a conserved MAP kinase that plays a role in these processes. Fluorescence microscopy and EM revealed that the cilia of dyf-5 loss-of-function (lf) animals are elongated and are not properly aligned into the amphid channel. Some cilia do enter the amphid channel, but the distal ends of these cilia show accumulation of proteins. Consistent with these observations, we found that six IFT proteins accumulate in the cilia of dyf-5(lf) mutants. In addition, using genetic analyses and live imaging to measure the motility of IFT proteins, we show that dyf-5 is required to restrict kinesin II to the cilia middle segments. Finally, we show that, in dyf-5(lf) mutants, OSM-3 moves at a reduced speed and is not attached to IFT particles. We propose that DYF-5 plays a role in the undocking of kinesin II from IFT particles and in the docking of OSM-3 onto IFT particles.


The EMBO Journal | 2006

Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.

Renate K. Hukema; Suzanne Rademakers; Martijn P. J. Dekkers; Jan Burghoorn; Gert Jansen

Caenorhabditis elegans shows chemoattraction to 0.1–200 mM NaCl, avoidance of higher NaCl concentrations, and avoidance of otherwise attractive NaCl concentrations after prolonged exposure to NaCl (gustatory plasticity). Previous studies have shown that the ASE and ASH sensory neurons primarily mediate attraction and avoidance of NaCl, respectively. Here we show that balances between at least four sensory cell types, ASE, ASI, ASH, ADF and perhaps ADL, modulate the response to NaCl. Our results suggest that two NaCl‐attraction signalling pathways exist, one of which uses Ca2+/cGMP signalling. In addition, we provide evidence that attraction to NaCl is antagonised by G‐protein signalling in the ASH neurons, which is desensitised by the G‐protein‐coupled receptor kinase GRK‐2. Finally, the response to NaCl is modulated by G‐protein signalling in the ASI and ADF neurons, a second G‐protein pathway in ASH and cGMP signalling in neurons exposed to the body fluid.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Regulatory Factor X (RFX)-mediated transcriptional rewiring of ciliary genes in animals

Brian P. Piasecki; Jan Burghoorn; Peter Swoboda

Cilia were present in the last eukaryotic common ancestor (LECA) and were retained by most organisms spanning all extant eukaryotic lineages, including organisms in the Unikonta (Amoebozoa, fungi, choanoflagellates, and animals), Archaeplastida, Excavata, Chromalveolata, and Rhizaria. In certain animals, including humans, ciliary gene regulation is mediated by Regulatory Factor X (RFX) transcription factors (TFs). RFX TFs bind X-box promoter motifs and thereby positively regulate >50 ciliary genes. Though RFX-mediated ciliary gene regulation has been studied in several bilaterian animals, little is known about the evolutionary conservation of ciliary gene regulation. Here, we explore the evolutionary relationships between RFX TFs and cilia. By sampling the genome sequences of >120 eukaryotic organisms, we show that RFX TFs are exclusively found in unikont organisms (whether ciliated or not), but are completely absent from the genome sequences of all nonunikont organisms (again, whether ciliated or not). Sampling the promoter sequences of 12 highly conserved ciliary genes from 23 diverse unikont and nonunikont organisms further revealed that phylogenetic footprints of X-box promoter motif sequences are found exclusively in ciliary genes of certain animals. Thus, there is no correlation between cilia/ciliary genes and the presence or absence of RFX TFs and X-box promoter motifs in nonanimal unikont and in nonunikont organisms. These data suggest that RFX TFs originated early in the unikont lineage, distinctly after cilia evolved. The evolutionary model that best explains these observations indicates that the transcriptional rewiring of many ciliary genes by RFX TFs occurred early in the animal lineage.


FEBS Letters | 2006

Lifespan decrease in a Caenorhabditis elegans mutant lacking TRX-1, a thioredoxin expressed in ASJ sensory neurons

Antonio Miranda-Vizuete; Juan Carlos Fierro González; Gabriele Gahmon; Jan Burghoorn; Plácido Navas; Peter Swoboda

Thioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.5 encodes a thioredoxin (TRX‐1) that is expressed in ASJ ciliated sensory neurons, and to some extent also in the posterior‐most intestinal cells. TRX‐1 is active at reducing protein disulfides in the presence of a heterologous thioredoxin reductase. A mutant worm strain carrying a null allele of the trx‐1 gene displays a reproducible decrease in both mean and maximum lifespan when compared to wild‐type. The identification and characterization of TRX‐1 paves the way to use C. elegans as an in vivo model to study the role of thioredoxins in lifespan and nervous system physiology and pathology.


Biochemical Journal | 2004

Phosphorylation of androgen receptor isoforms

Hao Yun Wong; Jan Burghoorn; Marije van Leeuwen; Petra E. de Ruiter; Esther Schippers; Leen J. Blok; Ka Wan Li; Henk L. Dekker; Luitzen de Jong; Jan Trapman; J. Anton Grootegoed; Albert O. Brinkmann

Phosphorylation of the human AR (androgen receptor) is directly correlated with the appearance of at least three AR isoforms on an SDS/polyacrylamide gel. However, it is still not clear to what extent phosphorylation is involved in the occurrence of isoforms, which sites are phosphorylated and what are the functions of these phosphosites. The human AR was expressed in COS-1 cells and AR phosphorylation was studied further by mutational analyses and by using reversed-phase HPLC and MS. The reversed-phase HPLC elution pattern of the three isoforms revealed that Ser-650 was phosphorylated constitutively. After de novo synthesis, only Ser-650 was phosphorylated in the smallest isoform of 110 kDa and both Ser-650 and Ser-94 were phosphorylated in the second isoform of 112 kDa. The hormone-induced 114 kDa isoform shows an overall increase in phosphorylation of all the isolated peptides. The activities of the Ser-Ala substitution mutant S650A (Ser-650-->Ala) was found to be identical with wild-type AR activation in four different cell lines and three different functional analyses, e.g. transactivation, N- and C-terminal-domain interaction and co-activation by transcriptional intermediary factor 2. This was also found for mutants S94A and S515A with respect to transactivation. However, the S515A mutation, which should eliminate phosphorylation of the potential mitogen-activated protein kinase site, Ser-515, resulted in an unphosphorylated form of the peptide containing Ser-650. This suggests that Ser-515 can modulate phosphorylation at another site. The present study shows that the AR isoform pattern from AR de novo synthesis is directly linked to differential phosphorylation of a distinct set of sites. After mutagenesis of these sites, no major change in functional activity of the AR was observed.


Developmental Biology | 2011

Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.

Prasad Phirke; Evgeni Efimenko; Swetha Mohan; Jan Burghoorn; Filip Crona; Mathieu W. Bakhoum; Maria Trieb; Kim Schuske; Erik M. Jorgensen; Brian P. Piasecki; Michel R. Leroux; Peter Swoboda

Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function.


Developmental Biology | 2012

The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box.

Jan Burghoorn; Brian P. Piasecki; Filip Crona; Prasad Phirke; Kristian Jeppsson; Peter Swoboda

At the core of the primary transcriptional network regulating ciliary gene expression in Caenorhabditis elegans sensory neurons is the RFX/DAF-19 transcription factor, which binds and thereby positively regulates 13-15 bp X-box promoter motifs found in the cis-regulatory regions of many ciliary genes. However, the variable expression of direct RFX-target genes in various sets of ciliated sensory neurons (CSNs) occurs through as of yet uncharacterized mechanisms. In this study the cis-regulatory regions of 41 direct RFX-target genes are compared using in vivo genetic analyses and computational comparisons of orthologous nematode sequences. We find that neither the proximity to the translational start site nor the exact sequence composition of the X-box promoter motif of the respective ciliary gene can explain the variation in expression patterns observed among different direct RFX-target genes. Instead, a novel enhancer element appears to co-regulate ciliary genes in a DAF-19 dependent manner. This cytosine- and thymidine-rich sequence, the C-box, was found in the cis-regulatory regions in close proximity to the respective X-box motif for 84% of the most broadly expressed direct RFX-target genes sampled in this study. Molecular characterization confirmed that these 8-11 bp C-box sequences act as strong enhancer elements for direct RFX-target genes. An artificial promoter containing only an X-box promoter motif and two of the C-box enhancer elements was able to drive strong expression of a GFP reporter construct in many C. elegans CSNs. These data provide a much-improved understanding of how direct RFX-target genes are differentially regulated in C. elegans and will provide a molecular model for uncovering the transcriptional network mediating ciliary gene expression in animals.


Journal of Cell Science | 2013

SQL-1, homologue of the Golgi protein GMAP210, modulates Intraflagellar Transport in C. elegans

Joost R. Broekhuis; Suzanne Rademakers; Jan Burghoorn; Gert Jansen

Summary Primary cilia are microtubule-based organelles that have important sensory functions. For their function, cilia rely on the delivery of specific proteins, both by intracellular trafficking and intraflagellar transport (IFT). In the cilia of Caenorhabditis elegans, anterograde IFT is mediated by kinesin-II and OSM-3. Previously, we have shown that expression of a dominant active G protein &agr; subunit (GPA-3QL) in amphid channel neurons affects the coordination of kinesin-II and OSM-3 and also affects cilia length, suggesting that environmental signals can modulate these processes. Here, we show that loss-of-function of sql-1 (suppressor of gpa-3QL 1), which encodes the homologue of the mammalian Golgi protein GMAP210, suppresses the gpa-3QL cilia length phenotype. SQL-1 localizes to the Golgi apparatus, where it contributes to maintaining Golgi organization. Loss of sql-1 by itself does not affect cilia length, whereas overexpression of sql-1 results in longer cilia. Using live imaging of fluorescently tagged IFT proteins, we show that in sql-1 mutants OSM-3 moves faster, kinesin-II moves slower and that some complex A and B proteins move at an intermediate velocity, while others move at the same velocity as OSM-3. This indicates that mutation of sql-1 destabilizes the IFT complex. Finally, we show that simultaneous inactivation of sql-1 and activation of gpa-3QL affects the velocity of OSM-3. In summary, we show that in C. elegans the Golgin protein SQL-1 plays an important role in maintaining the stability of the IFT complex.

Collaboration


Dive into the Jan Burghoorn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gert Jansen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Suzanne Rademakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juha Kere

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge