Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan C. Schagemann is active.

Publication


Featured researches published by Jan C. Schagemann.


Tissue Engineering Part A | 2009

Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model.

Jan C. Schagemann; Christoph Erggelet; Hsi-Wei Chung; Andreas Lahm; Haymo Kurz; Eike Mrosek

The objective of the current study was to determine the suitability of cell-laden and cell-free alginate-gelatin biopolymer hydrogel for osteochondral restoration in a sheep model (n = 12). Four femoral defects per animal were filled with hydrogel (cHG) plus autologous chondrocytes (cHG + C) or periosteal cells (cHG + P) or gel only (cHG) or were left untreated (E). In situ solidification enabled instantaneous implant fixation. Sixteen weeks postoperatively, defect sites were processed for light microscopy and immunofluorescence. A modified Mankin and a semi-quantitative immunoreactivity score were used to evaluate histology and immunofluorescence, respectively. Defects after cHG + C were restored with smooth, hyaline-like neo-cartilage and trabecular subchondral bone. cHG + P and cHG treatments revealed slightly inferior regenerate morphology. Undifferentiated tissue was found in E. The histological score showed significant (p < 0.05) differences between all treatment groups. In conclusion, cHG induces satisfactory defect regeneration. Complete filling of the cavity in one step and subsequent rapid in situ solidification was feasible and facilitated graft fixation. Cell implantation might be beneficial, because cells seem to play a key role in histological outcome. Still, their contribution to the repair process remains unresolved because host cell influx takes place. The combination of alginate and gelatin, however, creates an environment capable of serving implanted and host cells for osteo-chondrogenic tissue regeneration.


Biomaterials | 2010

The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules

Jan C. Schagemann; Haymo Kurz; Michelle E. Casper; James S. Stone; Mahrokh Dadsetan; Sun Yu-Long; Eike Mrosek; James S. Fitzsimmons; Shawn W. O'Driscoll; Gregory G. Reinholz

Previously we demonstrated that chondrocyte ECM synthesis and mitotic activity was dependent on scaffold composition when cultured on uncoated PCL scaffolds (pPCL) or PCL composites containing hyaluronan (PCL/HA), chitosan (PCL/CS), fibrin (PCL/F), or collagen type I (PCL/COL1). We hypothesized that initial cell contact with these biomaterials results in ultrastructural changes and alters CD44 and integrin beta1 expression. The current study was designed to investigate the early ultrastructural responses of chondrocytes on these scaffolds and expression of CD44 and integrin beta1. A common observation 1 h after seeding was the abundance of cell processes. Different types of cell processes occurred in different areas of the same cell and on different cells within the same composite. Chondrocytes seeded onto PCL/CS had the greatest cell surface enhancement. PCL/HA promoted CD44 expression and almost spherical cells with a low degree of surface enhancement. PCL/COL1 enabled continuing expression of integrin beta1 and CD44. In contrast, cells in PCL/CS, PCL/F and pPCL promoted elliptic cells with a higher degree of surface enhancement and no prolonged CD44 and integrin beta1 expression. A strong variability of cell surface processes indicated either reparative or degenerative adaptation to the artificial environment. Interestingly, we found initial integrin beta1 expression in all composite scaffolds, but not in pPCL although this promoted strong adhesiveness as indicated by the formation of stress fibers. In conclusion, chondrocytes respond to biomaterials early after implantation by altering ultrastructural characteristics and expression of CD44 and integrin beta1.


Journal of Orthopaedic Research | 2009

Porous tantalum and poly-ε-caprolactone biocomposites for osteochondral defect repair: Preliminary studies in rabbits

Eike Mrosek; Jan C. Schagemann; Hsi Wei Chung; James S. Fitzsimmons; Michael J. Yaszemski; Rodrigo Mardones; Shawn W. O'Driscoll; Gregory G. Reinholz

Currently, various techniques are in use for the repair of osteochondral defects, none of them being truly satisfactory and they are often two step procedures. Comorbidity due to cancellous bone harvest from the iliac crest further complicates the procedure. Our previous in vitro studies suggest that porous tantalum (TM) or poly‐ε‐caprolactone scaffolds (PCL) in combination with periosteal grafts could be used for osteochondral defect repair. In this in vivo study, cylindrical osteochondral defects were created on the medial and lateral condyles of 10 rabbits and filled with TM/periosteum or PCL/periosteum biosynthetic composites (n = 8 each). The regenerated osteochondral tissue was then analyzed histologically, and evaluated in an independent and blinded manner by five different observers using a 30‐point histological score. The overall histological score for PCL/periosteum was significantly better than for TM/periosteum. However, most of the regenerates were well integrated with the surrounding bone (PCL/periosteum, n = 6.4; TM/periosteum, n = 7) along with partial restoration of the tidemark (PCL/periosteum, n = 4.4; TM/periosteum, n = 5.6). A cover of hyaline‐like morphology was found after PCL/periosteum treatment (n = 4.8), yet the cartilage yields were inconsistent. In conclusion, the applied TM and PCL scaffolds promoted excellent subchondral bone regeneration. Neo‐cartilage formation from periosteum supported by a scaffold was inconsistent. This is the first study to show in vivo results of both PCL and TM scaffolds for a novel approach to osteochondral defect repair.


Journal of Biomedical Materials Research Part A | 2009

Poly‐ϵ‐caprolactone/gel hybrid scaffolds for cartilage tissue engineering

Jan C. Schagemann; H. Chung; Eike Mrosek; James J. Stone; James S. Fitzsimmons; Shawn W. O'Driscoll; Gregory G. Reinholz

The aim of this study was to determine the suitability of hybrid scaffolds composed of naturally derived biopolymer gels and macroporous poly-epsilon-caprolactone (PCL) scaffolds for neocartilage formation in vitro. Rabbit articular chondrocytes were seeded into PCL/HA (1 wt % hyaluronan), PCL/CS (0.5 wt % chitosan), PCL/F (1:3 fibrin sealant plus aprotinin), and PCL/COL1 (0.24% type I collagen) hybrids and cultured statically for up to 50 days. Growth characteristics were evaluated by histological analysis, scanning electron microscopy, and confocal laser scanning microscopy. Neocartilage was quantified using a dimethyl-methylene blue assay for sulfated glycosaminoglycans (sGAG) and an enzyme-linked immunosorbent assay for type II collagen (COL2), normalized to dsDNA content by fluorescent PicoGreen assay. Chondrocytes were homogenously distributed throughout the entire scaffold and exhibited a predominantly spheroidal shape 1 h after being seeded into scaffolds. Immunofluorescence depicted expanding proteoglycan deposition with time. The sGAG per dsDNA increased in all hybrids between days 25 and 50. PCL/HA scaffolds consistently promoted highest yields. In contrast, total sGAG and total COL2 decreased in all hybrids except PCL/CS, which favored increasing values and a significantly higher total COL2 at day 50. Overall, dsDNA content decreased significantly with time, and particularly between days 3 and 6. The PCL/HA hybrid displayed two proliferation peaks at days 3 and 25, and PCL/COL1 displayed one proliferation peak at day 12. The developed hybrids provided distinct short-term environments for implanted chondrocytes, with not all of them being explicitly beneficial (PCL/F, PCL/COL1). The PCL/HA and PCL/CS hybrids, however, promoted specific neocartilage formation and initial cell retention and are thus promising for cartilage tissue engineering.


Cells Tissues Organs | 2006

Morphology and Function of Ovine Articular Cartilage Chondrocytes in 3-D Hydrogel Culture

Jan C. Schagemann; Eike Mrosek; Rüdiger Landers; Haymo Kurz; Christoph Erggelet

Different cell- and biomaterial-based tissue engineering techniques are under investigation to restore damaged tissue. Strategies that use chondrogenic cells or tissues in combination with bioresorbable delivery materials are considered to be suitable to regenerate bio-artificial cartilage. Three-dimensional (3-D) cell embedding techniques can provide anchorage-independent cell growth and homogenous spatial cell arrangement, which play a key role in the maintenance of the characteristic phenotype and thus the formation of differentiated tissue. We developed a new injectable high water content (90%) hydrogel formulation with 5% sodium alginic acid and 5% gelatin as a temporary supportive intercellular matrix for 3-D cell culture. The objective was to determine whether the in vitro hydrogel culture of chondrocytes could preserve hyaline characteristics and thus could provide cartilage regeneration in vitro. Chondrocytes harvested from knee joints of skeletally mature sheep were cultured 3-D in hydrogel (7 × 106 cells/ml, 2.8-µl beads) for up to 10 weeks. Cell morphology and viability were evaluated with light microscopy, and proliferative activity was assessed with antibromodeoxyuridine immunofluorescence. Expression of collagens type I (COL1) and II (COL2), cartilage proteoglycans (PG) and hyaluronan synthases (HAS) were studied immunohistochemically. We observed that up to 36% of chondrocytes proliferated, while almost 100% presented a differentiated spheroidal phenotype. After an initial decrease at 2 weeks, cell density recovered to 85% of the initial absolute value at 10 weeks. Expression of hyaline matrix molecules resembled the in vivo pattern with increasing spatial deposition of PG and COL2. The proportion of PG-positive cells increased from initially 13 to 53% after 10 weeks, in contrast to consistently 100% COL2-positive cells. We conclude that 3-D hydrogel culture, even without mechanical stimulation or growth factor application, can keep chondrocytes in a differentiated state and provides a chondrogenic cell environment for in vitro cartilage regeneration for at least 10 weeks. Moreover, this hydrogel appears to be a suitable cell delivery material for subsequent in vivo implantation.


Osteoarthritis and Cartilage | 2009

Rejuvenation of periosteal chondrogenesis using local growth factor injection

Gregory G. Reinholz; James S. Fitzsimmons; Michelle E. Casper; T.J. Ruesink; H. Chung; Jan C. Schagemann; Shawn W. O'Driscoll

OBJECTIVE To examine the potential for rejuvenation of aged periosteum by local injection of transforming growth factor-beta1 (TGF-beta1) and insulin-like growth factor-1 (IGF-1) alone or in combination to induce cambium cell proliferation and enhance in vitro periosteal cartilage formation. METHODS A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of TGF-beta1 and/or IGF-1 percutaneously. After 1, 3, 5, or 7 days, the rabbits were sacrificed and cambium cellularity or in vitro cartilage forming capacity was determined. RESULTS A significant increase in cambium cellularity and thickness, and in vitro cartilage formation was observed after injection of TGF-beta1 alone or in combination with IGF-1. In 12 month-old rabbits, mean cambium cellularity increased 5-fold from 49 to 237 cells/mm and in vitro cartilage production increased 12-fold from 0.8 to 9.7 mg 7 days after TGF-beta1 (200 ng) injection compared to vehicle controls (P<0.0001). A correlation was observed between cambium cellularity and in vitro cartilage production (R2=0.98). An added benefit of IGF-1 plus TGF-beta1 on in vitro cartilage production compared to TGF-beta1 alone was observed in the 2 year-old rabbits. IGF-1 alone generally had no effect on either cambium cellularity or in vitro cartilage production in any of the age groups. CONCLUSIONS These results clearly demonstrate that it is possible to increase cambium cellularity and in vitro cartilage production in aged rabbit periosteum, to levels comparable to younger rabbits, using local injection of TGF-beta1 alone or in combination with IGF-1, thereby rejuvenating aged periosteum.


Journal of Biomedical Materials Research Part A | 2013

Chondrogenic differentiation of bone marrow‐derived mesenchymal stromal cells via biomimetic and bioactive poly‐ε‐caprolactone scaffolds

Jan C. Schagemann; S. Paul; Michelle E. Casper; J. Rohwedel; J. Kramer; C. Kaps; H. Mittelstaedt; M. Fehr; Gregory G. Reinholz

The objective of this study was to develop a scaffold for mesenchymal stromal cell (MSC) recruitment, proliferation, and chondrogenic differentiation. The concept behind the design is to mimic the cartilage matrix and contain stimulatory agents that make continuous supply of inductive factors redundant. Nanofibrous (N: ~400 nm) and microfibrous (M: ~10 μm) poly-ε-caprolactone (PCL) scaffolds were combined with 1% high-molecular-weight sodium hyaluronate (NHA/MHA), 1% hyaluronan (HA) and 200 ng transforming growth factor-beta 1 (TGF-β1; NTGF/MTGF), or 0.1% bovine serum albumin (N/M). Scaffolds were seeded with MSCs from bone marrow and cultured without growth factors in vitro. Cultures with chondrogenic medium supplemented with TGF-β1 served as controls. Proliferation, migration, and release of TGF-β1 were investigated. Cell differentiation was evaluated by polymerase chain reaction (PCR) and real-time PCR. NTGF and MTGF exhibited primarily an initial release of TGF-β1. None of the factors released by the scaffolds recruited MSCs. The expression of aggrecan was dependent on the scaffold ultrastructure with nanofibers promoting increasing and microfibers decreasing expression levels. Composites containing HA demonstrated elevated seeding efficiency and lower type I collagen expression. Expression of type II collagen was dependent on continuous or late supply of TGF-β1, which was not provided by our scaffold design. The initial release of TGF-β1 induced an expression of type I collagen and osteogenic marker genes. In conclusion, nanofibrous PCL scaffolds with or without augmentation are suitable for chondrogenic initiation of MSCs. Initial release of HA is sufficient in terms of directing the implanted MSCs toward a chondrogenic end, whereas a late release of TGF-β1 is preferred to foster type II and avoid type I collagen expression.


Cartilage | 2016

Bilayer Implants Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model

Jan C. Schagemann; Nicola Rudert; Michelle Taylor; S. Sim; E. Quenneville; M. Garon; Mathias Klinger; Michael D. Buschmann; Hagen Mittelstaedt

Objective To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. Methods Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. Results Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. Conclusion There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair.


Acta Orthopaedica | 2011

Synovial chondromatosis of the hip with atypical MRI morphology and mistakable clinical symptoms — a case report

Jan C. Schagemann; Peter Hunold; Martin Russlies; Hagen Mittelstaedt

A 32-year-old male presented to us with 6-month symptoms of unilateral spinal claudication (L3 right) together with lumbar pain and intermittent tenderness of the right sacroiliac joint with insidi...


Annals of Anatomy-anatomischer Anzeiger | 2011

Thirty-year follow-up after Wagner resurfacing hip arthroplasty: Case report.

Jan C. Schagemann; Martin Russlies; Hagen Mittelstädt

Wagner hip arthroplasty has been used as a resurfacing and thereby bone-preserving method for the treatment of disabling osteoarthritis particularly in younger individuals. The underlying rationale was to replace exclusively diseased tissue, to restore anatomy and function and to optimize range of motion and stress transfer to the proximal femur. Wagners approach was designed to reduce the risk of infection and to make later revisions easier. The technique was however associated with a high revision rate due to early aseptic wear induced component loosening and neck fractures. Nevertheless, we report a case of a 30 years follow-up of a Wagner resurfacing hip arthroplasty.

Collaboration


Dive into the Jan C. Schagemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haymo Kurz

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge