Jan Cordewener
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Cordewener.
Proteomics | 2008
Antoine H.P. America; Jan Cordewener
Quantitative proteomics approaches using stable isotopes are well‐known and used in many labs nowadays. More recently, high resolution quantitative approaches are reported that rely on LC‐MS quantitation of peptide concentrations by comparing peak intensities between multiple runs obtained by continuous detection in MS mode. Characteristic of these comparative LC‐MS procedures is that they do not rely on the use of stable isotopes; therefore the procedure is often referred to as label‐free LC‐MS. In order to compare at comprehensive scale peak intensity data in multiple LC‐MS datasets, dedicated software is required for detection, matching and alignment of peaks. The high accuracy in quantitative determination of peptide abundancies provides an impressive level of detail. This approach also requires an experimental set‐up where quantitative aspects of protein extraction and reproducible separation conditions need to be well controlled. In this paper we will provide insight in the critical parameters that affect the quality of the results and list an overview of the most recent software packages that are available for this procedure.
Plant Cell Reports | 1994
Jan Custers; Jan Cordewener; Y. Nöllen; Hans J. M. Dons; M.M. van Lookeren Campagne
SummaryTemperature controls the developmental fate of isolated Brassica napus microspores in vitro. Culture at 32.5°C leads to sporophytic development and the formation of embryos. Here we show that culture at 17.5°C leads to gametophytic development, and the formation of pollen-like structures at high frequencies (up to 80% after 7 days in culture). Early stages of both developmental pathways are observed in culture at 25.0°C, and embryos are produced at low frequencies (0.7%) at that temperature. Culturing B. napus microspores at 32.5°C versus 17.5°C brings the switch from gametophytic to sporophytic development under simple experimental control and provides a convenient tool for investigating the cellular and molecular mechanisms controlling this developmental switch.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Jose L. Lozano-Torres; R.H.P. Wilbers; P. Gawronski; J.C. Boshoven; A.M. Finkers-Tomczak; Jan Cordewener; Antoine H.P. America; H.A. Overmars; J.W. van t Klooster; L. Baranowski; M. Sobczak; M. Ilyas; R. A. L. Van der Hoorn; A. Schots; P.J.G.M. de Wit; Jaap Bakker; Aska Goverse; Geert Smant
Plants lack the seemingly unlimited receptor diversity of a somatic adaptive immune system as found in vertebrates and rely on only a relatively small set of innate immune receptors to resist a myriad of pathogens. Here, we show that disease-resistant tomato plants use an efficient mechanism to leverage the limited nonself recognition capacity of their innate immune system. We found that the extracellular plant immune receptor protein Cf-2 of the red currant tomato (Solanum pimpinellifolium) has acquired dual resistance specificity by sensing perturbations in a common virulence target of two independently evolved effectors of a fungus and a nematode. The Cf-2 protein, originally identified as a monospecific immune receptor for the leaf mold fungus Cladosporium fulvum, also mediates disease resistance to the root parasitic nematode Globodera rostochiensis pathotype Ro1-Mierenbos. The Cf-2–mediated dual resistance is triggered by effector-induced perturbations of the apoplastic Rcr3pim protein of S. pimpinellifolium. Binding of the venom allergen-like effector protein Gr-VAP1 of G. rostochiensis to Rcr3pim perturbs the active site of this papain-like cysteine protease. In the absence of the Cf-2 receptor, Rcr3pim increases the susceptibility of tomato plants to G. rostochiensis, thus showing its role as a virulence target of these nematodes. Furthermore, both nematode infection and transient expression of Gr-VAP1 in tomato plants harboring Cf-2 and Rcr3pim trigger a defense-related programmed cell death in plant cells. Our data demonstrate that monitoring host proteins targeted by multiple pathogens broadens the spectrum of disease resistances mediated by single plant immune receptors.
Plant Physiology | 2007
Ronny Joosen; Jan Cordewener; Ence Darmo Jaya Supena; O.F.J. Vorst; Michiel Lammers; Chris Maliepaard; Tieme Zeilmaker; Brian Miki; Twan America; Jan Custers; Kim Boutilier
Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants.
Sexual Plant Reproduction | 1997
R. Binarova; Gerd Hause; V. Cenklova; Jan Cordewener; M.M. van Lookeren Campagne
Abstract Until now it has been considered that in rape seed (Brassica napus) only late uninucleate microspores and early bicellular pollen are competent for induction of in vitro embryogenesis. Here we describe that pollen isolated at the late bicellular stage can also be induced to undergo embryogenesis. By the application of an additional short and more severe heat stress treatment, DNA synthesis was initiated in both generative and vegetative nuclei, but only vegetative cells were able to complete the cell cycle and to divide further. The ability of late bicellular pollen to respond to embryogenic induction treatment was accompanied by rearrangements of the microtubulular cytoskeleton and by the nuclear localization of 70 kDa heat shock proteins (HSP70). These findings confirm earlier observations that there is a strong correlation between the induction of embryogenesis and the synthesis and nuclear localization of HSP70.
Planta | 1995
Jan Cordewener; Gerd Hause; E. Görgen; R. Busink; B. Hause; Hans J. M. Dons; A.A.M. van Lammeren; M. M. van Lookeren Campagne; P.M. Pechan
Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolated Brassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.
Plant Molecular Biology | 1997
Jan Custers; Margryt Teatske Oldenhof; J.A.M. Schrauwen; Jan Cordewener; George J. Wullems; Michiel M. Van Lookeren Campagne
In order to modify the early stages of pollen development in a transgenic context microspore-specific promoters are required. We tested two putatively microspore-specific promoters, the Bp4 promoter from rapeseed and the NTM19 promoter from tobacco. Expression of the gus and barnase reporter genes under the control of these two promoters was studied in transgenic tobacco. Contrary to expectations, the Bp4 promoter became active only after the first pollen mitosis, and not in the microspores. The NTM19 promoter turned out to be highly microspore-specific and directed very high levels of gus expression to the unicellular microspores. The NTM19-barnase transgene caused cell-autonomous death at the mid-unicellular microspore stage, whereas Bp4-barnase induced cell ablation of early to mid-bicellular pollen. Both promoter-barnase transgenes did not affect the sporophyte and were inherited through the female germline. These results show that both the NTM19 and Bp4 promoters are expressed only in the male germline, and that the NTM19 promoter is an excellent tool to direct high levels of transgene expression exclusively to the microspores. This may have important biotechnological applications.
Proteomics | 2012
Maureen Hummel; Jan Cordewener; Joost C. M. de Groot; Sjef Smeekens; Antoine H.P. America; Johannes Hanson
Cytosolic ribosomes are among the largest multisubunit cellular complexes. Arabidopsis thaliana ribosomes consist of 79 different ribosomal proteins (r‐proteins) that each are encoded by two to six (paralogous) genes. It is unknown whether the paralogs are incorporated into the ribosome and whether the relative incorporation of r‐protein paralogs varies in response to environmental cues. Immunopurified ribosomes were isolated from A. thaliana rosette leaves fed with sucrose. Trypsin digested samples were analyzed by qTOF‐LC‐MS using both MSE and classical MS/MS. Peptide features obtained by using these two methods were identified using MASCOT and Proteinlynx Global Server searching the theoretical sequences of A. thaliana proteins. The A. thaliana genome encodes 237 r‐proteins and 69% of these were identified with proteotypic peptides for most of the identified proteins. These r‐proteins were identified with average protein sequence coverage of 32% observed by MSE. Interestingly, the analysis shows that the abundance of r‐protein paralogs in the ribosome changes in response to sucrose feeding. This is particularly evident for paralogous RPS3aA, RPS5A, RPL8B, and RACK1 proteins. These results show that protein synthesis in the A. thaliana cytosol involves a heterogeneous ribosomal population. The implications of these findings in the regulation of translation are discussed.
Journal of Separation Science | 2009
Jan Cordewener; Dion M.A.M. Luykx; Rob Frankhuizen; Maria G.E.G. Bremer; Hendricus Hooijerink; Antoine H.P. America
A nontargeted protein identification method was developed to screen for adulterations in skimmed-milk powder (SMP). There are indications of falsified SMP content due to the addition of plant proteins. To demonstrate the reliability and accuracy of the developed comparative LC-MS method using a quadrupole TOF MS instrument, adulterated SMP samples were prepared by the addition of protein isolates of soy and pea to skimmed-milk before pasteurisation and evaporation. The comparative LC-MS approach enabled unequivocal discrimination of those SMP samples containing soy and pea protein from nonadulterated SMP. To identify the source of (plant) proteins present in the adulterated SMP, data-dependent LC-MS/MS was used in combination with an include list of differential peptides. Numerous peptides originating from the major seed proteins of soy (glycinin, beta-conglycin) and pea (legumin, vicilin) could be identified in this way.
Planta | 1994
Jan Cordewener; R. Busink; Jan Traas; Jan Custers; Hans J. M. Dons; Michiel M. Van Lookeren Campagne
Culture temperature determines the developmental fate of isolated microspores from Brassica napus L. At 18°C, tricellular pollen develops, whereas culture at 32°C for 8 h leads to the quantitative and synchronous induction of embryogenesis, and ultimately to the formation of embryos. We investigated the changes in protein synthesis that are associated with this 8-h inductive period by using in-situ [35S]methionine labeling, followed by two-dimensional (2-D) gel electrophoretic analysis of the radiolabeled proteins. Qualitative and quantitative computer analyses of 2-D [35S]methionine protein patterns showed six polypeptides specifically labeled under embryogenic culture conditions. Eighteen polypeptides incorporated [35S]methionine at a statistically significant higher rate under embryogenic culture conditions (32°C) than in the controls (18°C), whereas one protein was preferentially labeled under non-embryogenic culture conditions (18°C). These results indicate that only a limited number of proteins detectable in the 2-D gels of microspore extracts are associated with the early induction of embryogenesis. The reproducible identification of the differentially radiolabeled proteins in the 2-D gels allow the sequencing of representative peptides and the isolation of the corresponding cDNAs. This may lead to the identification and characterization of proteins associated with the very first stages of plant embryogenesis.