Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan D. Marshall.
Nature Genetics | 2002
Gayle B. Collin; Jan D. Marshall; Akihiro Ikeda; W. Venus So; Isabelle Russell-Eggitt; Pietro Maffei; Sebastian Beck; Cornelius F. Boerkoel; Nicola Sicolo; Mitchell Martin; Patsy M. Nishina; Jürgen K. Naggert
Alström syndrome is a homogeneous autosomal recessive disorder that is characterized by childhood obesity associated with hyperinsulinemia, chronic hyperglycemia and neurosensory deficits. The gene involved in Alström syndrome probably interacts with genetic modifiers, as subsets of affected individuals present with additional features such as dilated cardiomyopathy, hepatic dysfunction, hypothyroidism, male hypogonadism, short stature and mild to moderate developmental delay, and with secondary complications normally associated with type 2 diabetes, such as hyperlipidemia and atherosclerosis. Our detection of an uncharacterized transcript, KIAA0328, led us to identify the gene ALMS1, which contains sequence variations, including four frameshift mutations and two nonsense mutations, that segregate with Alström syndrome in six unrelated families. ALMS1 is ubiquitously expressed at low levels and does not share significant sequence homology with other genes reported so far. The identification of ALMS1 provides an entry point into a new pathway leading toward the understanding of both Alström syndrome and the common diseases that characterize it.
European Journal of Human Genetics | 2007
Jan D. Marshall; Sebastian Beck; Pietro Maffei; Jürgen K. Naggert
Alström Syndrome is an autosomal recessive, single gene disorder caused by mutations in ALMS1 (Chr 2p13), a novel gene of currently unknown molecular function. Alström Syndrome is multisystemic, with cone–rod retinal dystrophy leading to juvenile blindness, sensorineural hearing loss, obesity, insulin resistance with hyperinsulinemia, and type 2 diabetes mellitus. Very high incidences of additional disease phenotypes that may severely affect prognosis and survival include endocrine abnormalities, dilated cardiomyopathy, pulmonary fibrosis and restrictive lung disease, and progressive hepatic and renal failure. Other clinical features in some patients are hypertension, hypothyroidism, hyperlipidemia, hypogonadism, urological abnormalities, adult short stature, and bone-skeletal disturbances. Most patients demonstrate normal intelligence, although some reports indicate delayed psychomotor and intellectual development. The life span of patients with Alström Syndrome rarely exceeds 40 years. There is no specific therapy for Alström Syndrome, but early diagnosis and intervention can moderate the progression of the disease phenotypes and improve the longevity and quality of life for patients.
Current Genomics | 2011
Jan D. Marshall; Pietro Maffei; Gayle B. Collin; Jürgen K. Naggert
Alström syndrome is a rare autosomal recessive genetic disorder characterized by cone-rod dystrophy, hearing loss, childhood truncal obesity, insulin resistance and hyperinsulinemia, type 2 diabetes, hypertriglyceridemia, short stature in adulthood, cardiomyopathy, and progressive pulmonary, hepatic, and renal dysfunction. Symptoms first appear in infancy and progressive development of multi-organ pathology leads to a reduced life expectancy. Variability in age of onset and severity of clinical symptoms, even within families, is likely due to genetic background. Alström syndrome is caused by mutations in ALMS1, a large gene comprised of 23 exons and coding for a protein of 4,169 amino acids. In general, ALMS1 gene defects include insertions, deletions, and nonsense mutations leading to protein truncations and found primarily in exons 8, 10 and 16. Multiple alternate splice forms exist. ALMS1 protein is found in centrosomes, basal bodies, and cytosol of all tissues affected by the disease. The identification of ALMS1 as a ciliary protein explains the range of observed phenotypes and their similarity to those of other ciliopathies such as Bardet-Biedl syndrome. Studies involving murine and cellular models of Alström syndrome have provided insight into the pathogenic mechanisms underlying obesity and type 2 diabetes, and other clinical problems. Ultimately, research into the pathogenesis of Alström syndrome should lead to better management and treatments for individuals, and have potentially important ramifications for other rare ciliopathies, as well as more common causes of obesity and diabetes, and other conditions common in the general population.
American Journal of Medical Genetics | 1997
Jan D. Marshall; Mark Ludman; Sarah Shea; Sonia R. Salisbury; Steven M. Willi; Robert G. LaRoche; Patsy M. Nishina
We describe a large Acadian kindred including 8 Alstrom Syndrome (AS) patients, with an age range of 4 to 26 at the time of clinical assessment. The affected subjects come from 5 nuclear families within this kindred. The phenotype includes early childhood retinopathy, progressive sensorineural hearing loss, truncal obesity, and acanthosis nigricans. In addition, hyperinsulinemia and hypertriglyceridemia with normal cholesterol levels were observed in most affected individuals tested. Non-insulin dependent diabetes mellitus and growth retardation appear to be age-related manifestations that occur post-adolescence. Younger affected children are not overtly hyperglycemic and are normal or above average height for age. Although the AS patients in kindred 1 presumably carry the same mutation, many manifestations of the disease are variable. For example, of the 8 children in the Acadian kindred, 4 have scoliosis, 2 have had infantile cardiomyopathy, 2 are hypothyroid, 1 has had hepatic dysfunction and is hypertensive, and 4 have developed asthma. Seven subjects described in this kindred exhibit developmental delay. One additional manifestation not described widely in the literature, advanced bone age, was observed in all subjects tested. The clinical data from this large Acadian kindred, together with information obtained from 4 additional AS patients in 3 unrelated kindreds, confirm and extend clinical observations previously described. In addition, the Acadian kindred with multiple affected individuals, probably arising from a common founder, should allow for identification of the chromosomal localization of a gene causing AS.
Human Molecular Genetics | 2011
Daniel J. Jagger; Gayle B. Collin; John D. Kelly; Emily R. Towers; Graham Nevill; Chantal Longo-Guess; Jennifer Benson; Karin Halsey; David F. Dolan; Jan D. Marshall; Jürgen K. Naggert; Andrew Forge
Alström Syndrome is a life-threatening disease characterized primarily by numerous metabolic abnormalities, retinal degeneration, cardiomyopathy, kidney and liver disease, and sensorineural hearing loss. The cellular localization of the affected protein, ALMS1, has suggested roles in ciliary function and/or ciliogenesis. We have investigated the role of ALMS1 in the cochlea and the pathogenesis of hearing loss in Alström Syndrome. In neonatal rat organ of Corti, ALMS1 was localized to the basal bodies of hair cells and supporting cells. ALMS1 was also evident at the basal bodies of differentiating fibrocytes and marginal cells in the lateral wall. Centriolar ALMS1 expression was retained into maturity. In Alms1-disrupted mice, which recapitulate the neurosensory deficits of human Alström Syndrome, cochleae displayed several cyto-architectural defects including abnormalities in the shape and orientation of hair cell stereociliary bundles. Developing hair cells were ciliated, suggesting that ciliogenesis was largely normal. In adult mice, in addition to bundle abnormalities, there was an accelerated loss of outer hair cells and the progressive appearance of large lesions in stria vascularis. Although the mice progressively lost distortion product otoacoustic emissions, suggesting defects in outer hair cell amplification, their endocochlear potentials were normal, indicating the strial atrophy did not affect its function. These results identify previously unrecognized cochlear histopathologies associated with this ciliopathy that (i) implicate ALMS1 in planar cell polarity signaling and (ii) suggest that the loss of outer hair cells causes the majority of the hearing loss in Alström Syndrome.
Human Mutation | 2015
Jan D. Marshall; Jean Muller; Gayle B. Collin; Gabriella Milan; Stephen F. Kingsmore; Darrell L. Dinwiddie; Emily Farrow; Neil Miller; Francesca Favaretto; Pietro Maffei; Hélène Dollfus; Roberto Vettor; Juergen K Naggert
Alström Syndrome (ALMS), a recessive, monogenic ciliopathy caused by mutations in ALMS1, is typically characterized by multisystem involvement including early cone‐rod retinal dystrophy and blindness, hearing loss, childhood obesity, type 2 diabetes mellitus, cardiomyopathy, fibrosis, and multiple organ failure. The precise function of ALMS1 remains elusive, but roles in endosomal and ciliary transport and cell cycle regulation have been shown. The aim of our study was to further define the spectrum of ALMS1 mutations in patients with clinical features of ALMS. Mutational analysis in a world‐wide cohort of 204 families identified 109 novel mutations, extending the number of known ALMS1 mutations to 239 and highlighting the allelic heterogeneity of this disorder. This study represents the most comprehensive mutation analysis in patients with ALMS, identifying the largest number of novel mutations in a single study worldwide. Here, we also provide an overview of all ALMS1 mutations identified to date.
PLOS ONE | 2012
Gayle B. Collin; Jan D. Marshall; Benjamin L. King; Gabriella Milan; Pietro Maffei; Daniel J. Jagger; Jürgen K. Naggert
Alström syndrome (ALMS) is a progressive multi-systemic disorder characterized by cone-rod dystrophy, sensorineural hearing loss, childhood obesity, insulin resistance and cardiac, renal, and hepatic dysfunction. The gene responsible for Alström syndrome, ALMS1, is ubiquitously expressed and has multiple splice variants. The protein encoded by this gene has been implicated in ciliary function, cell cycle control, and intracellular transport. To gain better insight into the pathways through which ALMS1 functions, we carried out a yeast two hybrid (Y2H) screen in several mouse tissue libraries to identify ALMS1 interacting partners. The majority of proteins found to interact with the murine carboxy-terminal end (19/32) of ALMS1 were α-actinin isoforms. Interestingly, several of the identified ALMS1 interacting partners (α-actinin 1, α-actinin 4, myosin Vb, rad50 interacting 1 and huntingtin associated protein1A) have been previously associated with endosome recycling and/or centrosome function. We examined dermal fibroblasts from human subjects bearing a disruption in ALMS1 for defects in the endocytic pathway. Fibroblasts from these patients had a lower uptake of transferrin and reduced clearance of transferrin compared to controls. Antibodies directed against ALMS1 N- and C-terminal epitopes label centrosomes and endosomal structures at the cleavage furrow of dividing MDCK cells, respectively, suggesting isoform-specific cellular functions. Our results suggest a role for ALMS1 variants in the recycling endosome pathway and give us new insights into the pathogenesis of a subset of clinical phenotypes associated with ALMS.
European Journal of Human Genetics | 2011
Inés Pereiro; Bethan E. Hoskins; Jan D. Marshall; Gayle B. Collin; Jürgen K. Naggert; Teresa Piñeiro-Gallego; Eneli Oitmaa; Nicholas Katsanis; Diana Valverde; Philip L. Beales
Bardet–Biedl syndrome (BBS; OMIM no. 209 900) and Alström syndrome (ALMS; OMIM no. 203 800) are rare, multisystem genetic disorders showing both a highly variable phenotype and considerable phenotypic overlap; they are included in the emerging group of diseases called ciliopathies. The genetic heterogeneity of BBS with 14 causal genes described to date, serves to further complicate mutational analysis. The development of the BBS–ALMS array which detects known mutations in these genes has allowed us to detect at least one mutation in 40.5% of BBS families and in 26.7% of ALMS families validating this as an efficient and cost-effective first pass screening modality. Furthermore, using this method, we found two BBS families segregating three BBS alleles further supporting oligogenicity or modifier roles for additional mutations. We did not observe more than two mutations in any ALMS family.
Human Genetics | 1999
Gayle B. Collin; Jan D. Marshall; Cornelius F. Boerkoel; Alex V. Levin; Rosanna Weksberg; Jacquie Greenberg; Jacques L. Michaud; Jürgen K. Naggert; Patsy M. Nishina
Abstract. Alström syndrome is a rare autosomal recessive disorder characterized by retinal degeneration, sensorineural hearing loss, early-onset obesity, and non-insulin-dependent diabetes mellitus. The gene for Alström syndrome (ALMS1) has been previously localized to human chromosome 2p13 by homozygosity mapping in two distinct isolated populations – French Acadian and North African. Pair-wise analyses resulted in maximum lod (logarithm of the odds ratio) scores of 3.84 and 2.9, respectively. To confirm these findings, a large linkage study was performed in twelve additional families segregating for Alström syndrome. A maximum two-point lod score of 7.13 (θ=0.00) for marker D2S2110 and a maximum cumulative multipoint lod score of 9.16 for marker D2S2110 were observed, further supporting linkage to chromosome 2p13. No evidence of genetic heterogeneity was observed in these families. Meiotic recombination events have localized the critical region containing ALMS1 to a 6.1-cM interval flanked by markers D2S327 and D2S286. A fine resolution radiation hybrid map of 31 genes and markers has been constructed.
PLOS ONE | 2011
Elisabetta Zulato; Francesca Favaretto; Caterina Veronese; Stefano Campanaro; Jan D. Marshall; Sara Romano; Anna Cabrelle; Gayle B. Collin; Barbara Zavan; Anna S. Belloni; Enrica Rampazzo; Jürgen K. Naggert; Giovanni Abatangelo; Nicola Sicolo; Pietro Maffei; Gabriella Milan; Roberto Vettor
Alström Syndrome (ALMS) is a rare genetic disorder (483 living cases), characterized by many clinical manifestations, including blindness, obesity, type 2 diabetes and cardiomyopathy. ALMS is caused by mutations in the ALMS1 gene, encoding for a large protein with implicated roles in ciliary function, cellular quiescence and intracellular transport. Patients with ALMS have extensive fibrosis in nearly all tissues resulting in a progressive organ failure which is often the ultimate cause of death. To focus on the role of ALMS1 mutations in the generation and maintenance of this pathological fibrosis, we performed gene expression analysis, ultrastructural characterization and functional assays in 4 dermal fibroblast cultures from ALMS patients. Using a genome-wide gene expression analysis we found alterations in genes belonging to specific categories (cell cycle, extracellular matrix (ECM) and fibrosis, cellular architecture/motility and apoptosis). ALMS fibroblasts display cytoskeleton abnormalities and migration impairment, up-regulate the expression and production of collagens and despite the increase in the cell cycle length are more resistant to apoptosis. Therefore ALMS1-deficient fibroblasts showed a constitutively activated myofibroblast phenotype even if they do not derive from a fibrotic lesion. Our results support a genetic basis for the fibrosis observed in ALMS and show that both an excessive ECM production and a failure to eliminate myofibroblasts are key mechanisms. Furthermore, our findings suggest new roles for ALMS1 in both intra- and extra-cellular events which are essential not only for the normal cellular function but also for cell-cell and ECM-cell interactions.