Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan David Hohmann is active.

Publication


Featured researches published by Jan David Hohmann.


Circulation | 2012

Novel Single-Chain Antibody-Targeted Microbubbles for Molecular Ultrasound Imaging of Thrombosis Validation of a Unique Noninvasive Method for Rapid and Sensitive Detection of Thrombi and Monitoring of Success or Failure of Thrombolysis in Mice

Xiaowei Wang; Christoph E. Hagemeyer; Jan David Hohmann; Ephraem Leitner; Paul C. J. Armstrong; Fu Jia; Manfred Olschewski; Andrew Needles; Karlheinz Peter; Ingo Ahrens

Background— Molecular imaging is a fast emerging technology allowing noninvasive detection of vascular pathologies. However, imaging modalities offering high resolution currently do not allow real-time imaging. We hypothesized that contrast-enhanced ultrasound with microbubbles (MBs) selectively targeted to activated platelets would offer high-resolution, real-time molecular imaging of evolving and dissolving arterial thrombi. Methods and Results— Lipid-shell based gas-filled MBs were conjugated to either a single-chain antibody specific for activated glycoprotein IIb/IIIa via binding to a Ligand-Induced Binding Site (LIBS-MBs) or a nonspecific single-chain antibody (control MBs). Successful conjugation was assessed in flow cytometry and immunofluorescence double staining. LIBS-MBs but not control MBs strongly adhered to both immobilized activated platelets and microthrombi under flow. Thrombi induced in carotid arteries of C57Bl6 mice in vivo by ferric chloride injury were then assessed with ultrasound before and 20 minutes after MB injection through the use of gray-scale area intensity measurement. Gray-scale units converted to decibels demonstrated a significant increase after LIBS-MB but not after control MB injection (9.55±1.7 versus 1.46±1.3 dB; P <0.01). Furthermore, after thrombolysis with urokinase, LIBS-MB ultrasound imaging allows monitoring of the reduction of thrombus size ( P <0.001). Conclusion— We demonstrate that glycoprotein IIb/IIIa–targeted MBs specifically bind to activated platelets in vitro and allow real-time molecular imaging of acute arterial thrombosis and monitoring of the success or failure of pharmacological thrombolysis in vivo. # Clinical Perspective {#article-title-50}Background— Molecular imaging is a fast emerging technology allowing noninvasive detection of vascular pathologies. However, imaging modalities offering high resolution currently do not allow real-time imaging. We hypothesized that contrast-enhanced ultrasound with microbubbles (MBs) selectively targeted to activated platelets would offer high-resolution, real-time molecular imaging of evolving and dissolving arterial thrombi. Methods and Results— Lipid-shell based gas-filled MBs were conjugated to either a single-chain antibody specific for activated glycoprotein IIb/IIIa via binding to a Ligand-Induced Binding Site (LIBS-MBs) or a nonspecific single-chain antibody (control MBs). Successful conjugation was assessed in flow cytometry and immunofluorescence double staining. LIBS-MBs but not control MBs strongly adhered to both immobilized activated platelets and microthrombi under flow. Thrombi induced in carotid arteries of C57Bl6 mice in vivo by ferric chloride injury were then assessed with ultrasound before and 20 minutes after MB injection through the use of gray-scale area intensity measurement. Gray-scale units converted to decibels demonstrated a significant increase after LIBS-MB but not after control MB injection (9.55±1.7 versus 1.46±1.3 dB; P<0.01). Furthermore, after thrombolysis with urokinase, LIBS-MB ultrasound imaging allows monitoring of the reduction of thrombus size (P<0.001). Conclusion— We demonstrate that glycoprotein IIb/IIIa–targeted MBs specifically bind to activated platelets in vitro and allow real-time molecular imaging of acute arterial thrombosis and monitoring of the success or failure of pharmacological thrombolysis in vivo.


Circulation Research | 2011

Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis – but does not affect immunity and thrombosis in mice

Dennis Wolf; Jan David Hohmann; Ansgar Wiedemann; Kamila Bledzka; Hermann Blankenbach; Timoteo Marchini; Katharina Gutte; Katharina Zeschky; Nicole Bassler; Natalie Hoppe; Alexandra Ortiz Rodriguez; Nadine Herr; Ingo Hilgendorf; Peter Stachon; Florian Willecke; Daniel Duerschmied; Constantin von zur Muhlen; Dmitry A. Soloviev; Li Zhang; Christoph Bode; Edward F. Plow; Peter Libby; Karlheinz Peter; Andreas Zirlik

Rationale: CD40L figures prominently in chronic inflammatory diseases such as atherosclerosis. However, since CD40L potently regulates immune function and hemostasis by interaction with CD40 receptor and the platelet integrin GPIIb/IIIa, its global inhibition compromises host defense and generated thromboembolic complications in clinical trials. We recently reported that CD40L mediates atherogenesis independently of CD40 and proposed Mac-1 as an alternate receptor. Objective: Here, we molecularly characterized the CD40L-Mac-1 interaction and tested whether its selective inhibition by a small peptide modulates inflammation and atherogenesis in vivo. Methods and Results: CD40L concentration-dependently bound to Mac-1 I-domain in solid phase binding assays, and a high-affinity interaction was revealed by surface-plasmon-resonance analysis. We identified the motif EQLKKSKTL, an exposed loop between the &agr;1 helix and the &bgr;-sheet B, on Mac-1 as binding site for CD40L. A linear peptide mimicking this sequence, M7, specifically inhibited the interaction of CD40L and Mac-1. A cyclisized version optimized for in vivo use, cM7, decreased peritoneal inflammation and inflammatory cell recruitment in vivo. Finally, LDLr−/− mice treated with intraperitoneal injections of cM7 developed smaller, less inflamed atherosclerotic lesions featuring characteristics of stability. However, cM7 did not interfere with CD40L-CD40 binding in vitro and CD40L-GPIIb/IIIa-mediated thrombus formation in vivo. Conclusions: We present the novel finding that CD40L binds to the EQLKKSKTL motif on Mac-1 mediating leukocyte recruitment and atherogenesis. Specific inhibition of CD40L-Mac-1 binding may represent an attractive anti-inflammatory treatment strategy for atherosclerosis and other inflammatory conditions, potentially avoiding the unwanted immunologic and thrombotic effects of global inhibition of CD40L.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Evidence of Platelet Activation at Medically Used Hypothermia and Mechanistic Data Indicating ADP as a Key Mediator and Therapeutic Target

Andreas Straub; Stefanie Krajewski; Jan David Hohmann; Erik Westein; Fu Jia; Nicole Bassler; Carly Selan; Julia Kurz; Hans Peter Wendel; Shala Dezfouli; Yuping Yuan; Harshal Nandurkar; Shaun P. Jackson; Michael J. Hickey; Karlheinz Peter

Objective—Hypothermia is used in various clinical settings to inhibit ischemia-related organ damage. However, prothrombotic effects have been described as potential side effects. This study aimed to elucidate the mechanism of hypothermia-induced platelet activation and subsequent prothrombotic events and to develop preventative pharmacological strategies applicable during clinically used hypothermia. Methods and Results—Platelet function was investigated ex vivo and in vivo at clinically used hypothermia (28°C/18°C). Hypothermic mice demonstrated increased expression of platelet activation marker P-selectin, platelet-leukocyte aggregate formation, and thrombocytopenia. Intravital microscopy of FeCl3-injured murine mesenteric arteries revealed increased platelet thrombus formation with hypothermia. Ex vivo flow chamber experiments indicated increased platelet-fibrinogen adhesion under hypothermia. We show that hypothermia results in reduced ADP hydrolysis via reduction of CD39 (E-NTPDase1) activity, resulting in increased levels of ADP and subsequent augmented primary and secondary platelet activation. In vivo administration of ADP receptor P2Y12 antagonists and recombinant soluble CD39 prevented hypothermia-induced thrombus formation and thrombocytopenia, respectively. Conclusion—The platelet agonist ADP plays a key role in hypothermia-induced platelet activation. Inhibition of receptor binding or hydrolysis of ADP has the potential to protect platelets against hypothermia-induced activation. Our findings provide a rational basis for further evaluation of novel antithrombotic strategies in clinically applied hypothermia.


Circulation Research | 2014

Towards Effective and Safe Thrombolysis and Thromboprophylaxis: Preclinical Testing of a Novel Antibody-Targeted Recombinant Plasminogen Activator Directed Against Activated Platelets

Xiaowei Wang; Jathushan Palasubramaniam; Yannik Gkanatsas; Jan David Hohmann; Erik Westein; Ruchi Kanojia; Karen Alt; Dexing Huang; Fu Jia; Ingo Ahrens; Robert L. Medcalf; Karlheinz Peter; Christoph E. Hagemeyer

Rationale: Fibrinolysis is a valuable alternative for the treatment of myocardial infarction when percutaneous coronary intervention is not available in a timely fashion. For acute ischemic stroke, fibrinolysis is the only treatment option with a very narrow therapeutic window. Clinically approved thrombolytics have significant drawbacks, including bleeding complications. Thus their use is highly restricted, leaving many patients untreated. Objective: We developed a novel targeted fibrinolytic drug that is directed against activated platelets. Methods and Results: We fused single-chain urokinase plasminogen activator (scuPA) to a small recombinant antibody (scFvSCE5), which targets the activated form of the platelet–integrin glycoprotein IIb/IIIa. Antibody binding and scuPA activity of this recombinant fusion protein were on par with the parent molecules. Prophylactic in vivo administration of scFvSCE5–scuPA (75 U/g body weight) prevented carotid artery occlusion after ferric chloride injury in a plasminogen-dependent process compared with saline ( P <0.001), and blood flow recovery was similar to high-dose nontargeted urokinase (500 U/g body weight). Tail bleeding time was significantly prolonged with this high dose of nontargeted urokinase, but not with equally effective targeted scFvSCE5–scuPA at 75 U/g body weight. Real-time in vivo molecular ultrasound imaging demonstrates significant therapeutic reduction of thrombus size after administration of 75 U/g body weight scFvSCE5–scuPA as compared with the same dose of a mutated, nontargeting scFv–scuPA or vehicle. The ability of scFvSCE5–scuPA to lyse thrombi was lost in plasminogen-deficient mice, but could be restored by intravenous injection of plasminogen. Conclusions: Targeting of scuPA to activated glycoprotein IIb/IIIa allows effective thrombolysis and the potential novel use as a fibrinolytic agent for thromboprophylaxis without bleeding complications. # Novelty and Significance {#article-title-48}Rationale: Fibrinolysis is a valuable alternative for the treatment of myocardial infarction when percutaneous coronary intervention is not available in a timely fashion. For acute ischemic stroke, fibrinolysis is the only treatment option with a very narrow therapeutic window. Clinically approved thrombolytics have significant drawbacks, including bleeding complications. Thus their use is highly restricted, leaving many patients untreated. Objective: We developed a novel targeted fibrinolytic drug that is directed against activated platelets. Methods and Results: We fused single-chain urokinase plasminogen activator (scuPA) to a small recombinant antibody (scFvSCE5), which targets the activated form of the platelet–integrin glycoprotein IIb/IIIa. Antibody binding and scuPA activity of this recombinant fusion protein were on par with the parent molecules. Prophylactic in vivo administration of scFvSCE5–scuPA (75 U/g body weight) prevented carotid artery occlusion after ferric chloride injury in a plasminogen-dependent process compared with saline (P<0.001), and blood flow recovery was similar to high-dose nontargeted urokinase (500 U/g body weight). Tail bleeding time was significantly prolonged with this high dose of nontargeted urokinase, but not with equally effective targeted scFvSCE5–scuPA at 75 U/g body weight. Real-time in vivo molecular ultrasound imaging demonstrates significant therapeutic reduction of thrombus size after administration of 75 U/g body weight scFvSCE5–scuPA as compared with the same dose of a mutated, nontargeting scFv–scuPA or vehicle. The ability of scFvSCE5–scuPA to lyse thrombi was lost in plasminogen-deficient mice, but could be restored by intravenous injection of plasminogen. Conclusions: Targeting of scuPA to activated glycoprotein IIb/IIIa allows effective thrombolysis and the potential novel use as a fibrinolytic agent for thromboprophylaxis without bleeding complications.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

An Activation-Specific Platelet Inhibitor That Can Be Turned On/Off by Medically Used Hypothermia

Denijal Topcic; Wookhyun Kim; Jessica K. Holien; Fu Jia; Paul C. J. Armstrong; Jan David Hohmann; Andreas Straub; Guy Y. Krippner; Carolyn A. Haller; Helena Domeij; Christoph E. Hagemeyer; Michael W. Parker; Elliot L. Chaikof; Karlheinz Peter

Objective— Therapeutic hypothermia is successfully used, for example, in cardiac surgery to protect organs from ischemia. Cardiosurgical procedures, especially in combination with extracorporeal circulation, and hypothermia itself are potentially prothrombotic. Despite the obvious need, the long half-life of antiplatelet drugs and thus the risk of postoperative bleedings have restricted their use in cardiac surgery. We describe here the design and testing of a unique recombinant hypothermia-controlled antiplatelet fusion protein with the aim of providing increased safety of hypothermia, as well as cardiac surgery. Methods and Results— An elastin-mimetic polypeptide was fused to an activation-specific glycoprotein (GP) IIb/IIIa-blocking single-chain antibody. In silico modeling illustrated the sterical hindrance of a &bgr;-spiral conformation of elastin-mimetic polypeptide preventing the single-chain antibody from inhibiting GPIIb/IIIa at 37°C. Circular dichroism spectra demonstrated reverse temperature transition, and flow cytometry showed binding to and blocking of GPIIb/IIIa at hypothermic body temperature (⩽32°C) but not at normal body temperature. In vivo thrombosis in mice was selectively inhibited at hypothermia but not at 37°C. Conclusion— This is the first description of a broadly applicable pharmacological strategy by which the activity of a potential drug can be controlled by temperature. In particular, this drug steerability may provide substantial benefits for antiplatelet therapy.


European Heart Journal | 2017

A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury

Melanie Ziegler; Jan David Hohmann; Amy Kate Searle; Meike-Kristin Abraham; Harshal Nandurkar; Xiaowei Wang; Karlheinz Peter

Aims CD39 is a cell membrane NTPase with anti-inflammatory and anti-platelet effects. However, its clinical use is limited by its bleeding side effect. With the goal of harnessing its therapeutic potential while avoiding haemostatic problems, we designed a fusion protein consisting of the extracellular domain of CD39 and a single-chain antibody (Targ-CD39) that specifically binds to activated glycoprotein (GP)IIb/IIIa and thus to activated platelets. Through this enrichment at activated platelets, the required systemic dose is below the dose impairing haemostasis. Methods and results Using an ischaemia/reperfusion mouse model (left anterior descending artery ligated for 1 h) we achieved remarkable protection of the reperfused tissue with Targ-CD39 compared with Non-targ-CD39 (mutated, non-binding version of Targ-CD39) and PBS control. Targ-CD39 restored ejection fraction and fractional shortening to a level indistinguishable from pre-injury status, while controls showed functional deterioration. Employing advanced clinically relevant methods of ultrasound analysis, we observed that both radial and longitudinal strain and strain rate showed infarct-typical changes of myocardial deformation in controls, but not in Targ-CD39 treated mice. Histological assessment confirmed strong reduction of infarct size and increase in neovascularization. Furthermore, attenuation of post-ischaemic inflammation was seen in cytokine profiling. Conclusion Overall, we demonstrate that Targ-CD39 holds promise for treatment of myocardial infarction.


PLOS ONE | 2015

In vitro study of a novel stent coating using modified CD39 messenger RNA to potentially reduce stent angioplasty-associated complications

Meike-Kristin Abraham; Andrea Nolte; Rebekka Reus; Andreas Behring; Diane Zengerle; Meltem Avci-Adali; Jan David Hohmann; Karlheinz Peter; Christian Schlensak; Hans Peter Wendel; Stefanie Krajewski

Background Stent angioplasty provides a minimally invasive treatment for atherosclerotic vessels. However, no treatment option for atherosclerosis-associated endothelial dysfunction, which is accompanied by a loss of CD39, is available, and hence, adverse effects like thromboembolism and restenosis may occur. Messenger RNA (mRNA)-based therapy represents a novel strategy, whereby de novo synthesis of a desired protein is achieved after delivery of a modified mRNA to the target cells. Methods and Findings Our study aimed to develop an innovative bioactive stent coating that induces overexpression of CD39 in the atherosclerotic vessel. Therefore, a modified CD39-encoding mRNA was produced by in vitro transcription. Different endothelial cells (ECs) were transfected with the mRNA, and CD39 expression and functionality were analyzed using various assays. Furthermore, CD39 mRNA was immobilized using poly(lactic-co-glycolic-acid) (PLGA), and the transfection efficiency in ECs was analyzed. Our data show that ECs successfully translate in vitro-generated CD39 mRNA after transfection. The overexpressed CD39 protein is highly functional in hydrolyzing ADP and in preventing platelet activation. Furthermore, PLGA-immobilized CD39 mRNA can be delivered to ECs without losing its functionality. Summary In summary, we present a novel and promising concept for a stent coating for the treatment of atherosclerotic blood vessels, whereby patients could be protected against angioplasty-associated complications.


Theranostics | 2017

Targeting activated platelets: A unique and potentially universal approach for cancer imaging

May Lin Yap; James D. McFadyen; Xiaowei Wang; Nicholas A. Zia; Jan David Hohmann; Melanie Ziegler; Yu Yao; Alan Pham; Matthew Harris; Paul S. Donnelly; P. Mark Hogarth; Geoffrey A. Pietersz; Bock Lim; Karlheinz Peter

Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer. Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, 64Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-64Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma. Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease. Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.


Molecular Therapy | 2018

Dual-Targeted Theranostic Delivery of miRs Arrests Abdominal Aortic Aneurysm Development

Xiaowei Wang; Amy Kate Searle; Jan David Hohmann; Ao Leo Liu; Meike-Kristin Abraham; Jathushan Palasubramaniam; Bock Lim; Yu Yao; Maria Wallert; Eefang Yu; Yung-Chih Chen; Karlheinz Peter

Abdominal aortic aneurysm (AAA) is an often deadly disease without medical, non-invasive treatment options. The upregulation of vascular cell adhesion molecule-1 (VCAM-1) on aortic endothelium provides an early target epitope for a novel biotechnological theranostic approach. MicroRNA-126 was used as a therapeutic agent, based on its capability to downregulate VCAM-1 expression in endothelial cells and thereby reduces leukocyte adhesion and exerts anti-inflammatory effects. Ultrasound microbubbles were chosen as carriers, allowing both molecular imaging as well as targeted therapy of AAA. Microbubbles were coupled with a VCAM-1-targeted single-chain antibody (scFvmVCAM-1) and a microRNA-126 mimic (M126) constituting theranostic microbubbles (TargMB-M126). TargMB-M126 downregulates VCAM-1 expression in vitro and in an in vivo acute inflammatory murine model. Most importantly, using TargMB-M126 and ultrasound-guided burst delivery of M126, the development of AAA in an angiotensin-II-induced mouse model can be prevented. Overall, we describe a unique biotechnological theranostic approach with the potential for early diagnosis and long-sought-after medical therapy of AAA.


Circulation | 2012

Novel Single-Chain Antibody-Targeted Microbubbles for Molecular Ultrasound Imaging of ThrombosisClinical Perspective

Xiaowei Wang; Christoph E. Hagemeyer; Jan David Hohmann; Ephraem Leitner; Paul C. J. Armstrong; Fu Jia; Manfred Olschewski; Andrew Needles; Karlheinz Peter; Ingo Ahrens

Background— Molecular imaging is a fast emerging technology allowing noninvasive detection of vascular pathologies. However, imaging modalities offering high resolution currently do not allow real-time imaging. We hypothesized that contrast-enhanced ultrasound with microbubbles (MBs) selectively targeted to activated platelets would offer high-resolution, real-time molecular imaging of evolving and dissolving arterial thrombi. Methods and Results— Lipid-shell based gas-filled MBs were conjugated to either a single-chain antibody specific for activated glycoprotein IIb/IIIa via binding to a Ligand-Induced Binding Site (LIBS-MBs) or a nonspecific single-chain antibody (control MBs). Successful conjugation was assessed in flow cytometry and immunofluorescence double staining. LIBS-MBs but not control MBs strongly adhered to both immobilized activated platelets and microthrombi under flow. Thrombi induced in carotid arteries of C57Bl6 mice in vivo by ferric chloride injury were then assessed with ultrasound before and 20 minutes after MB injection through the use of gray-scale area intensity measurement. Gray-scale units converted to decibels demonstrated a significant increase after LIBS-MB but not after control MB injection (9.55±1.7 versus 1.46±1.3 dB; P <0.01). Furthermore, after thrombolysis with urokinase, LIBS-MB ultrasound imaging allows monitoring of the reduction of thrombus size ( P <0.001). Conclusion— We demonstrate that glycoprotein IIb/IIIa–targeted MBs specifically bind to activated platelets in vitro and allow real-time molecular imaging of acute arterial thrombosis and monitoring of the success or failure of pharmacological thrombolysis in vivo. # Clinical Perspective {#article-title-50}Background— Molecular imaging is a fast emerging technology allowing noninvasive detection of vascular pathologies. However, imaging modalities offering high resolution currently do not allow real-time imaging. We hypothesized that contrast-enhanced ultrasound with microbubbles (MBs) selectively targeted to activated platelets would offer high-resolution, real-time molecular imaging of evolving and dissolving arterial thrombi. Methods and Results— Lipid-shell based gas-filled MBs were conjugated to either a single-chain antibody specific for activated glycoprotein IIb/IIIa via binding to a Ligand-Induced Binding Site (LIBS-MBs) or a nonspecific single-chain antibody (control MBs). Successful conjugation was assessed in flow cytometry and immunofluorescence double staining. LIBS-MBs but not control MBs strongly adhered to both immobilized activated platelets and microthrombi under flow. Thrombi induced in carotid arteries of C57Bl6 mice in vivo by ferric chloride injury were then assessed with ultrasound before and 20 minutes after MB injection through the use of gray-scale area intensity measurement. Gray-scale units converted to decibels demonstrated a significant increase after LIBS-MB but not after control MB injection (9.55±1.7 versus 1.46±1.3 dB; P<0.01). Furthermore, after thrombolysis with urokinase, LIBS-MB ultrasound imaging allows monitoring of the reduction of thrombus size (P<0.001). Conclusion— We demonstrate that glycoprotein IIb/IIIa–targeted MBs specifically bind to activated platelets in vitro and allow real-time molecular imaging of acute arterial thrombosis and monitoring of the success or failure of pharmacological thrombolysis in vivo.

Collaboration


Dive into the Jan David Hohmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fu Jia

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar

Ingo Ahrens

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Jathushan Palasubramaniam

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ephraem Leitner

Baker IDI Heart and Diabetes Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meike-Kristin Abraham

Baker IDI Heart and Diabetes Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge