Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Engvall is active.

Publication


Featured researches published by Jan Engvall.


Magnetic Resonance in Medicine | 1999

Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI

Lars Wigström; Tino Ebbers; Anna Fyrenius; Matts Karlsson; Jan Engvall; Bengt Wranne; Ann F. Bolger

The flow patterns in the human heart are complex and difficult to visualize using conventional two‐dimensional (2D) modalities, whether they depict a single velocity component (Doppler echocardiography) or all three components in a few slices (2D phase contrast MRI). To avoid these shortcomings, a temporally resolved 3D phase contrast technique was used to derive data describing the intracardiac velocity fields in normal volunteers. The MRI data were corrected for phase shifts caused by eddy currents and concomitant gradient fields, with improvement in the accuracy of subsequent flow visualizations. Pathlines describing the blood pathways through the heart were generated from the temporally resolved velocity data, starting from user‐specified locations and time frames. Flow trajectories were displayed as 3D particle traces, with simultaneous demonstration of morphologic 2D slices. This type of visualization is intuitive and interactive and may extend our understanding of dynamic and previously unrecognized patterns of intracardiac flow. Magn Reson Med 41:793–799, 1999.


European Heart Journal | 2003

Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study

Cf Madler; Nichola Payne; Ursula M. Wilkenshoff; Ariel Cohen; Geneviève Derumeaux; Luc Pierard; Jan Engvall; Lars-Åke Brodin; George R. Sutherland; Alan Gordon Fraser

AIMS To develop optimal methods for the objective non-invasive diagnosis of coronary artery disease, using myocardial Doppler velocities during dobutamine stress echocardiography. METHODS AND RESULTS We acquired tissue Doppler digital data during dobutamine stress in 289 subjects, and measured myocardial responses by off-line analysis of 11 left ventricular segments. Diagnostic criteria developed by comparing 92 normal subjects with 48 patients with coronary disease were refined in a prospective series of 149 patients referred with chest pain. Optimal diagnostic accuracy was achieved by logistic regression models, using systolic velocities at maximal stress in 7 myocardial segments, adjusting for independent correlations directly with heart rate and inversely with age and female gender (all p<0.001). Best cut-points from receiver-operator curves diagnosed left anterior descending, circumflex and right coronary disease with sensitivities and specificities of 80% and 80%, 91% and 80%, and 93% and 82%, respectively. All models performed better than velocity cut-offs alone (p<0.001). CONCLUSION Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography is best performed using diagnostic models based on segmental velocities at peak stress and adjusting for heart rate, and gender or age.


Journal of Cardiovascular Magnetic Resonance | 2007

Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance

Einar Heiberg; Matts Karlsson; Lars Wigström; Jan Engvall; Andreas Sigfridsson; Tino Ebbers; John-Peder Escobar Kvitting; Carl-Johan Carlhäll; Bengt Wranne

BACKGROUND The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context. METHODS Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route. CONCLUSION Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.


Heart | 2001

Three dimensional flow in the human left atrium

Anna Fyrenius; Lars Wigström; Tino Ebbers; Matts Karlsson; Jan Engvall

BACKGROUND Abnormal flow patterns in the left atrium in atrial fibrillation or mitral stenosis are associated with an increased risk of thrombosis and systemic embolisation; the characteristics of normal atrial flow that avoid stasis have not been well defined. OBJECTIVES To present a three dimensional particle trace visualisation of normal left atrial flow in vivo, constructed from flow velocities in three dimensional space. METHODS Particle trace visualisation of time resolved three dimensional magnetic resonance imaging velocity measurements was used to provide a display of intracardiac flow without the limitations of angle sensitivity or restriction to imaging planes. Global flow patterns of the left atrium were studied in 11 healthy volunteers. RESULTS In all subjects vortical flow was observed in the atrium during systole and diastolic diastasis (mean (SD) duration of systolic vortex, 280 (77) ms; and of diastolic vortex, 256 (118) ms). The volume incorporated and recirculated within the vortices originated predominantly from the left pulmonary veins. Inflow from the right veins passed along the vortex periphery, constrained between the vortex and the atrial wall. CONCLUSIONS Global left atrial flow in the normal human heart comprises consistent patterns specific to the phase of the cardiac cycle. Separate paths of left and right pulmonary venous inflow and vortex formation may have beneficial effects in avoiding left atrial stasis in the normal subject in sinus rhythm.


Journal of Cardiovascular Magnetic Resonance | 2010

Semi-automatic quantification of 4D left ventricular blood flow

Jonatan Eriksson; Carl-Johan Carlhäll; Petter Dyverfeldt; Jan Engvall; Tino Ebbers

BackgroundThe beating heart is the generator of blood flow through the cardiovascular system. Within the hearts own chambers, normal complex blood flow patterns can be disturbed by diseases. Methods for the quantification of intra-cardiac blood flow, with its 4D (3D+time) nature, are lacking. We sought to develop and validate a novel semi-automatic analysis approach that integrates flow and morphological data.MethodIn six healthy subjects and three patients with dilated cardiomyopathy, three-directional, three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) velocity data and balanced steady-state free-precession long- and short-axis images were acquired. The LV endocardium was segmented from the short-axis images at the times of isovolumetric contraction (IVC) and isovolumetric relaxation (IVR). At the time of IVC, pathlines were emitted from the IVC LV blood volume and traced forwards and backwards in time until IVR, thus including the entire cardiac cycle. The IVR volume was used to determine if and where the pathlines left the LV. This information was used to automatically separate the pathlines into four different components of flow: Direct Flow, Retained Inflow, Delayed Ejection Flow and Residual Volume. Blood volumes were calculated for every component by multiplying the number of pathlines with the blood volume represented by each pathline. The accuracy and inter- and intra-observer reproducibility of the approach were evaluated by analyzing volumes of LV inflow and outflow, the four flow components, and the end-diastolic volume.ResultsThe volume and distribution of the LV flow components were determined in all subjects. The calculated LV outflow volumes [ml] (67 ± 13) appeared to fall in between those obtained by through-plane phase-contrast CMR (77 ± 16) and Doppler ultrasound (58 ± 10), respectively. Calculated volumes of LV inflow (68 ± 11) and outflow (67 ± 13) were well matched (NS). Low inter- and intra-observer variability for the assessment of the volumes of the flow components was obtained.ConclusionsThis semi-automatic analysis approach for the quantification of 4D blood flow resulted in accurate LV inflow and outflow volumes and a high reproducibility for the assessment of LV flow components.


Journal of Magnetic Resonance Imaging | 2008

Assessment of Fluctuating Velocities in Disturbed Cardiovascular Blood Flow: In Vivo Feasibility of Generalized Phase-Contrast MRI

Petter Dyverfeldt; John-Peder Escobar Kvitting; Andreas Sigfridsson; Jan Engvall; Tino Ebbers

To evaluate the feasibility of generalized phase‐contrast magnetic resonance imaging (PC‐MRI) for the noninvasive assessment of fluctuating velocities in cardiovascular blood flow.


Magnetic Resonance in Medicine | 2001

Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI

Tino Ebbers; Lars Wigström; Jan Engvall; Matts Karlsson

Accurate, easy‐to‐use, noninvasive cardiovascular pressure registration would be an important addition to the diagnostic armamentarium for assessment of cardiac function. A novel noninvasive and three‐dimensional (3D) technique for estimation of relative cardiovascular pressures is presented. The relative pressure is calculated using the Navier‐Stokes equations along user‐defined lines placed within a time‐resolved 3D phase contrast MRI dataset. The lines may be either straight or curved to follow an actual streamline. The technique is validated in an in vitro model and tested on in vivo cases of normal and abnormal transmitral pressure differences and intraaortic flow. The method supplements an intuitive visualization technique for cardiovascular flow, 3D particle trace visualization, with a quantifiable diagnostic parameter estimated from the same dataset. Magn Reson Med 45:872–879, 2001.


Scandinavian Cardiovascular Journal | 2005

Semi-automatic quantification of myocardial infarction from delayed contrast enhanced magnetic resonance imaging.

Einar Heiberg; Henrik Engblom; Jan Engvall; Erik Hedström; Martin Ugander; Håkan Arheden

Objective. Accurate and reproducible assessment of myocardial infarction is important for treatment planning in patients with ischemic heart disease. This study describes a novel method to quantify myocardial infarction by semi-automatic delineation of hyperenhanced myocardium in delayed contrast enhanced (DE) magnetic resonance (MR) images. Design. The proposed method automatically detects the hyperenhanced tissue by first determining the signal intensity of non-enhanced myocardium. A fast level set algorithm was used to limit the heterogeneity of the hyperenhanced regions, and to exclude small regions that constitute noise rather than infarction. The method was evaluated in 40 patients; 20 with acute infarction and 20 with chronic healed infarction using scanners from two different manufacturers. Infarct size measured by the proposed semi-automatic method was compared with manual measurements from three experienced observers. The software used is freely available for research purposes at http://segment.heiberg.se. Results. The difference in infarct size between semi-automatic quantification and the mean of the three observers was 6.1±6.6 ml (mean±SD), and the interobserver variability (SD) was 4.2 ml. Conclusions. The method presented is a highly automated method for analyzing myocardial viability from DE-MR images. The bias of the method is acceptable and the variability is in the same order of magnitude as the interobserver variability for manual delineations.


Cardiovascular Ultrasound | 2009

Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar

Eva Maret; Tim Tödt; Lars Brudin; Eva Nylander; Eva Swahn; Jan Ohlsson; Jan Engvall

BackgroundThe aim of the study was to perform a feature tracking analysis on cine magnetic resonance (MR) images to elucidate if functional measurements of the motion of the left ventricular wall may detect scar defined with gadolinium enhanced MR.Myocardial contraction can be measured in terms of the velocity, displacement and local deformation (strain) of a particular myocardial segment. Contraction of the myocardial wall will be reduced in the presence of scar and as a consequence of reduced myocardial blood flow.MethodsThirty patients (3 women and 27 men) were selected based on the presence or absence of extensive scar in the anteroseptal area of the left ventricle. The patients were investigated in stable clinical condition, 4-8 weeks post ST-elevation myocardial infarction treated with percutaneous coronary intervention. Seventeen had a scar area >75% in at least one anteroseptal segment (scar) and thirteen had scar area <1% (non-scar). Velocity, displacement and strain were calculated in the longitudinal direction, tangential to the endocardial outline, and in the radial direction, perpendicular to the tangent.ResultsIn the scar patients, segments with scar showed lower functional measurements than remote segments. Radial measurements of velocity, displacement and strain performed better in terms of receiver-operator-characteristic curves (ROC) than the corresponding longitudinal measurements. The best area-under-curve was for radial strain, 0.89, where a cut-off value of 38.8% had 80% sensitivity and 86% specificity for the detection of a segment with scar area >50%. As a percentage of the mean, intraobserver variability was 16-14-26% for radial measurements of displacement-velocity-strain and corresponding interobserver variability was 13-12-18%.ConclusionFeature tracking analysis of cine-MR displays velocity, displacement and strain in the radial and longitudinal direction and may be used for the detection of transmural scar. The accuracy and repeatability of the radial functional measurements is satisfactory and global measures agree.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Quantification of presystolic blood flow organization and energetics in the human left ventricle

Jonatan Eriksson; Petter Dyverfeldt; Jan Engvall; Tino Ebbers; Carl-Johan Carlhäll

Intracardiac blood flow patterns are potentially important to cardiac pumping efficiency. However, these complex flow patterns remain incompletely characterized both in health and disease. We hypothesized that normal left ventricular (LV) blood flow patterns would preferentially optimize a portion of the end-diastolic volume (LVEDV) for effective and rapid systolic ejection by virtue of location near and motion towards the LV outflow tract (LVOT). Three-dimensional cine velocity and morphological data were acquired in 12 healthy persons and 1 patient with dilated cardiomyopathy using MRI. A previously validated method was used for analysis in which the LVEDV was separated into four functional flow components based on the bloods locations at the beginning and end of the cardiac cycle. Each components volume, kinetic energy (KE), site, direction, and linear momentum relative to the LVOT were calculated. Of the four components, the LV inflow that passes directly to outflow in a single cardiac cycle (Direct Flow) had the largest volume. At the time of isovolumic contraction, Direct Flow had the greatest amount of KE and the most favorable combination of distance, angle, and linear momentum relative to the LVOT. Atrial contraction boosted the late diastolic KE of the ejected components. We conclude that normal diastolic LV flow creates favorable conditions for ensuing ejection, defined by proximity and energetics, for the Direct Flow, and that atrial contraction augments the end-diastolic KE of the ejection volume. The correlation of Direct Flow characteristics with ejection efficiency might be a relevant investigative target in cardiac failure.

Collaboration


Dive into the Jan Engvall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Maret

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge