Jan G. Jaworski
Donald Danforth Plant Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan G. Jaworski.
Journal of Biological Chemistry | 2006
Jonathan E. Markham; Jia Li; Edgar B. Cahoon; Jan G. Jaworski
Sphingolipids are major components of the plasma membrane, tonoplast, and other endomembranes of plant cells. Previous compositional analyses have focused only on individual sphingolipid classes because of the widely differing polarities of plant sphingolipids. Consequently, the total content of sphingolipid classes in plants has yet to be quantified. In addition, the major polar sphingolipid class in the model plant Arabidopsis thaliana has not been previously determined. In this report, we describe the separation and quantification of sphingolipid classes from A. thaliana leaves using hydrolysis of sphingolipids and high performance liquid chromatography (HPLC) analysis of o-phthaldialdehyde derivatives of the released long-chain bases to monitor the separation steps. An extraction solvent that contained substantial proportions of water was used to solubilized >95% of the sphingolipids from leaves. Neutral and charged sphingolipids were then partitioned by anion exchange solid phase extraction. HPLC analysis of the charged lipid fraction from A. thaliana revealed only one major anionic sphingolipid class, which was identified by mass spectrometry as hexose-hexuronic-inositolphosphoceramide. The neutral sphingolipids were predominantly composed of monohexosylceramide with lesser amounts of ceramides. Extraction and separation of sphingolipids from soybean and tomato showed that, like A. thaliana, the neutral sphingolipids consisted of ceramide and monohexosylceramides; however, the major polar sphingolipid was found to be N-acetyl-hexosamine-hexuronic-inositolphosphoceramide. In extracts from A. thaliana leaves, hexosehexuronic-inositolphosphoceramides, monohexosylceramides, and ceramides accounted for ∼64, 34, and 2% of the total sphingolipids, respectively, suggesting an important role for the anionic sphingolipids in plant membranes.
Current Opinion in Plant Biology | 2003
Jan G. Jaworski; Edgar B. Cahoon
Unusual fatty acids that have useful industrial properties occur widely in the seed oils of many non-agronomic plant species. Researchers are attempting to use biotechnology to produce high levels of these fatty acids in the seeds of existing crop plants. cDNAs for a wide variety of unusual fatty acid biosynthetic enzymes have been identified, particularly through the use of expressed sequence tags. However, it has not yet been possible to use these cDNAs to produce large amounts of unusual fatty acids in seeds of transgenic plants. This difficulty points to the need for a greater understanding of fatty acid metabolism in oilseeds.
The Plant Cell | 2008
Ming Chen; Jonathan E. Markham; Charles R. Dietrich; Jan G. Jaworski; Edgar B. Cahoon
Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants, which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth, and had enhanced expression of programmed cell death associated–genes. Furthermore, the total content of sphingolipids on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB–null mutants, sphingolipid content was ∼2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and mediating the total content and fatty acid composition of sphingolipids in plants.
Journal of Biological Chemistry | 2006
Shilpi Paul; Kenneth Gable; Frédéric Beaudoin; Edgar B. Cahoon; Jan G. Jaworski; Johnathan A. Napier; Teresa M. Dunn
Several 3-keto-synthases have been studied, including the soluble fatty acid synthases, those involved in polyketide synthesis, and the FAE1-like 3-ketoacyl-CoA synthases. All of these condensing enzymes have a common ancestor and an enzymatic mechanism that involves a catalytic triad consisting of Cys, His, and His/Asn. In contrast to the FAE1-like family of enzymes that mediate plant microsomal fatty acid elongation, the condensation step of elongation in animals and in fungi appears to be mediated by the Elop homologs. Curiously these proteins bear no resemblance to the well characterized 3-keto-synthases. There are three ELO genes in yeast that encode the homologous Elo1p, Elo2p, and Elo3p proteins. Elo2p and Elo3p are required for synthesis of the very long-chain fatty acids, and mutants lacking both Elo2p and Elo3p are inviable confirming that the very long-chain fatty acids are essential for cellular functions. In this study we show that heterologous expression of several Arabidopsis FAE1-like genes rescues the lethality of an elo2Δelo3Δ yeast mutant. We further demonstrate that FAE1 acts in conjunction with the 3-keto and trans-2,3-enoyl reductases of the elongase system. These studies indicate that even though the plant-specific FAE1 family of condensing enzymes evolved independently of the Elop family of condensing enzymes, they utilize the same reductases and presumably dehydratase that the Elop proteins rely upon.
The Plant Cell | 2011
Dai-Yin Chao; Kenneth Gable; Ming Chen; Ivan Baxter; Charles R. Dietrich; Edgar B. Cahoon; Mary Lou Guerinot; Brett Lahner; Shiyou Lü; Jonathan E. Markham; Joe Morrissey; Gongshe Han; Sita D. Gupta; Jeffrey M. Harmon; Jan G. Jaworski; Teresa M. Dunn; David E. Salt
Sphingolipids are a diverse group of essential membrane lipids thought to play important roles in both membrane function and cellular signaling. By identifying an Arabidopsis thaliana mutant lacking 3-ketodihydrosphinganine reductase, a critical enzyme in sphingolipid biosynthesis, this work uncovers a connection between sphingolipid metabolism in roots and whole-plant mineral ion homeostasis. Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.
Biochimica et Biophysica Acta | 2001
Mahin Ghanevati; Jan G. Jaworski
The fatty acid elongase-1 beta-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.
Journal of Biological Chemistry | 2007
Yoseph Tsegaye; Christopher G. Richardson; Janis E. Bravo; Brendan J. Mulcahy; Daniel V. Lynch; Johnathan E. Markham; Jan G. Jaworski; Ming Chen; Edgar B. Cahoon; Teresa M. Dunn
The sphingoid long chain bases (LCBs) and their phosphorylated derivatives (LCB-Ps) are important signaling molecules in eukaryotic organisms. The cellular levels of LCB-Ps are tightly controlled by the coordinated action of the LCB kinase activity responsible for their synthesis and the LCB-P phosphatase and lyase activities responsible for their catabolism. Although recent studies have implicated LCB-Ps as regulatory molecules in plants, in comparison with yeast and mammals, much less is known about their metabolism and function in plants. To investigate the functions of LCB-Ps in plants, we have undertaken the identification and characterization of Arabidopsis genes that encode the enzymes of LCB-P metabolism. In this study the Arabidopsis At1g27980 gene was shown to encode the only detectable LCB-P lyase activity in Arabidopsis. The LCB-P lyase activity was characterized, and mutant plant lines lacking the lyase were generated and analyzed. Whereas in other organisms loss of LCB-P lyase activity is associated with accumulation of high levels of LCB/LCB-Ps and developmental abnormalities, the sphingolipid profiles of the mutant plants were remarkably similar to those of wild-type plants, and no developmental abnormalities were observed. Thus, these studies indicate that the lyase plays a minor role in maintenance of sphingolipid metabolism during normal plant development and growth. However, a clear role for the lyase was revealed upon perturbation of sphingolipid synthesis by treatment with the inhibitor of ceramide synthase, fumonisin B1.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Philip D. Bates; Sean R. Johnson; Xia Cao; Jia Li; Jeong-Won Nam; Jan G. Jaworski; John B. Ohlrogge; John Browse
Significance Many plants produce valuable fatty acids in seed oils that provide renewable alternatives to petrochemicals for production of lubricants, coatings, or polymers. However, most plants producing these unusual fatty acids are unsuitable as crops. Metabolic engineering of oilseed crops, or model species, to produce the high-value unusual fatty acids has produced only low yields of the desired products, and previous research has indicated fatty acid degradation as a potential major factor hindering oilseed engineering. By contrast, we here present evidence that inefficient utilization of unusual fatty acids within the endoplasmic reticulum can induce posttranslational inhibition of acetyl–CoA carboxylase activity in the plastid, thus inhibiting fatty acid synthesis and total oil accumulation. Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid.
Planta | 2007
Andrew J. King; Jeong-Won Nam; Jixiang Han; Josh Hilliard; Jan G. Jaworski
The surface of plants is covered by cuticular wax, which contains a mixture of very long-chain fatty acid (VLCFA) derivatives. This wax surface provides a hydrophobic barrier which reduces non-stomatal water loss. One component of the cuticular wax is the alkyl esters, which typically contain a VLCFA esterified to an alcohol of a similar length. As part of an EST project, we recently identified an acyltransferase with 19% sequence identity (amino acid) to a bacterial ‘bifunctional’ wax-ester synthase/diacylglycerol acyltransferase (WS/DGAT). Northern analysis revealed that this petunia homologue was expressed predominantly within the petals. The cDNA encoding the WS/DGAT homologue was introduced into a yeast strain deficient in triacylglycerol biosynthesis. The expressed protein failed to restore triacylglycerol biosynthesis, indicating that it lacked DGAT activity. However, isoamyl esters of fatty acids were detected, which suggested that the petunia cDNA encoded a wax-synthase. Waxes were extracted from petunia petals and leaves. The petal wax extract was rich in VLCFA esters of methyl, isoamyl, and short-to-medium straight chain alcohols (C4–C12). These low molecular weight wax-esters were not present in leaf wax. In-vitro enzymes assays were performed using the heterologously expressed protein and 14C-labelled substrates. The expressed protein was membrane bound, and displayed a preference for medium chain alcohols and saturated very long-chain acyl-CoAs. In fact, the activity would be sufficient to produce most of the low molecular wax-esters present in petals, with methyl-esters being the exception. This work is the first characterization of a eukaryotic protein from the WS/DGAT family.
Plant Physiology and Biochemistry | 2011
Jaemo Yang; M. Isabel Ordiz; Jan G. Jaworski; Roger N. Beachy
Cuticular waxes are involved in the regulation of the exchange of gases and water in plants and can impact tolerance to drought. However, the molecular mechanisms of the relationship between wax accumulation and drought tolerance are largely unknown. We applied the methoxyfenozide gene switching system to regulate expression of the WIN1/SHN1 gene (WAX INDUCER 1/SHINE1; At1G15360), a transcriptional activator, to regulate production of cuticular waxes and cutin and followed changes of gene expression, metabolites, and drought tolerance. Treatment with the inducer resulted in expression of the target gene and specific downstream genes, and gradually increased cuticular waxes. Induction of cuticular wax conferred tolerance to drought and recovery from drought, and was correlated with reduced numbers of stomata. Quantitative RT-PCR assays using RNAs from transgenic plants revealed that when expression of the WIN1/SHN1 gene was induced there was increased expression of genes involved in wax development, and reduced expression of selected genes, including SPCH (At5g53210); MUTE (At3g06120); and FAMA (At3g241400); and YODA (At1g63700), each of which is involved in stomatal development. These studies suggest that drought tolerance caused by the induction of WIN1/SHIN gene may be due to reduced numbers of stomata as well as to cuticular wax accumulation.