Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan G. M. Bolscher is active.

Publication


Featured researches published by Jan G. M. Bolscher.


Peptides | 2004

Lactoferrampin: a novel antimicrobial peptide in the N1-domain of bovine lactoferrin.

Marieke I.A. van der Kraan; Jasper Groenink; Kamran Nazmi; Enno C. I. Veerman; Jan G. M. Bolscher; Arie V. Nieuw Amerongen

The antimicrobial activity of bovine lactoferrin is attributed to lactoferricin, situated in the N1-domain. Based on common features of antimicrobial peptides, a second putative antimicrobial domain was identified in the N1-domain of lactoferrin, designated lactoferrampin. This novel peptide exhibited candidacidal activity, which was substantially higher than the activity of lactoferrin. Furthermore, lactoferrampin was active against Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, but not against the fermenting bacteria Actinomyces naeslundii, Porphyromonas gingivalis, Streptococcus mutans and Streptococcus sanguis. Notably, lactoferrampin is located in the N1-domain in close proximity to lactoferricin, which plays a crucial role in membrane-mediated activities of lactoferrin.


Journal of Biological Chemistry | 2002

Identification of the Bacteria-binding Peptide Domain on Salivary Agglutinin (gp-340/DMBT1), a Member of the Scavenger Receptor Cysteine-rich Superfamily

Floris J. Bikker; A.J.M. Ligtenberg; Kamran Nazmi; Enno C. I. Veerman; Wim van 't Hof; Jan G. M. Bolscher; Annemarie Poustka; Arie V. Nieuw Amerongen; Jan Mollenhauer

Salivary agglutinin is encoded byDMBT1 and identical to gp-340, a member of the scavenger receptor cysteine-rich (SRCR) superfamily. Salivary agglutinin/DMBT1 is known for its Streptococcus mutans agglutinating properties. This 300–400 kDa glycoprotein is composed of conserved peptide motifs: 14 SRCR domains that are separated by SRCR-interspersed domains (SIDs), 2 CUB (C1r/C1s Uegf Bmp1) domains, and a zona pellucida domain. We have searched for the peptide domains of agglutinin/DMBT1 responsible for bacteria binding. Digestion with endoproteinase Lys-C resulted in a protein fragment containing exclusively SRCR and SID domains that binds to S. mutans.To define more closely the S. mutans-binding domain, consensus-based peptides of the SRCR domains and SIDs were designed and synthesized. Only one of the SRCR peptides, designated SRCRP2, and none of the SID peptides bound to S. mutans. Strikingly, this peptide was also able to induce agglutination of S. mutansand a number of other bacteria. The repeated presence of this peptide in the native molecule endows agglutinin/DMBT1 with a general bacterial binding feature with a multivalent character. Moreover, our studies demonstrate for the first time that the polymorphic SRCR domains of salivary agglutinin/DMBT1 mediate ligand interactions.


Biochemical Journal | 2005

Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane

Alice L. den Hertog; Jan van Marle; Henk van Veen; Wim van 't Hof; Jan G. M. Bolscher; Enno C. I. Veerman; Arie V. Nieuw Amerongen

The effects of antimicrobial peptides on artificial membranes have been well-documented; however, reports on the ultrastructural effects on the membranes of micro-organisms are relatively scarce. We compared the effects of histatin 5 and LL-37, two antimicrobial peptides present in human saliva, on the functional and morphological properties of the Candida albicans cell membrane. Fluorescence microscopy and immunogold transmission electron microscopy revealed that LL-37 remained associated with the cell wall and cell membrane, whereas histatin 5 transmigrated over the membrane and accumulated intracellularly. Freeze-fracture electron microscopy revealed that LL-37 severely affected the membrane morphology, resulting in the disintegration of the membrane bilayer into discrete vesicles, and an instantaneous efflux of small molecules such as ATP as well as larger molecules such as proteins with molecular masses up to 40 kDa. The effects of histatin 5 on the membrane morphology were less pronounced, but still resulted in the efflux of nucleotides. As the morphological defects induced by histatin 5 are much smaller than those induced by LL-37, but the efflux of nucleotides is similar at comparable candidacidal concentrations, we suggest that the loss of nucleotides plays an important role in the killing process.


Journal of Controlled Release | 2012

Glycan-modified liposomes boost CD4 + and CD8 + T-cell responses by targeting DC-SIGN on dendritic cells

Wendy W. J. Unger; Astrid J. van Beelen; Sven C. M. Bruijns; Medha Joshi; Cynthia M. Fehres; Louis van Bloois; Marleen I. Verstege; Martino Ambrosini; Hakan Kalay; Kamran Nazmi; Jan G. M. Bolscher; Erik Hooijberg; Tanja D. de Gruijl; Gert Storm; Yvette van Kooyk

Cancer immunotherapy requires potent tumor-specific CD8(+) and CD4(+) T-cell responses, initiated by dendritic cells (DCs). Tumor antigens can be specifically targeted to DCs in vivo by exploiting their expression of C-type lectin receptors (CLR), which bind carbohydrate structures on antigens, resulting in internalization and antigen presentation to T-cells. We explored the potential of glycan-modified liposomes to target antigens to DCs to boost murine and human T-cell responses. Since DC-SIGN is a CLR expressed on DCs, liposomes were modified with DC-SIGN-binding glycans Lewis (Le)(B) or Le(X). Glycan modification of liposomes resulted in increased binding and internalization by BMDCs expressing human DC-SIGN. In the presence of LPS, this led to 100-fold more efficient presentation of the encapsulated antigens to CD4(+) and CD8(+) T-cells compared to unmodified liposomes or soluble antigen. Similarly, incubation of human moDC with melanoma antigen MART-1-encapsulated liposomes coated with Le(X) in the presence of LPS led to enhanced antigen-presentation to MART-1-specific CD8(+) T-cell clones. Moreover, this formulation drove primary CD8(+) T-cells to differentiate into high numbers of tetramer-specific, IFN-γ-producing effector T-cells. Together, our data demonstrate the potency of a glycoliposome-based vaccine targeting DC-SIGN for CD4(+) and CD8(+) effector T-cell activation. This approach may offer improved options for treatment of cancer patients and opens the way to in situ DC-targeted vaccination.


Molecular Immunology | 2013

Multivalent glycopeptide dendrimers for the targeted delivery of antigens to dendritic cells

Juan J. Garcia-Vallejo; Martino Ambrosini; A. Overbeek; W.E. van Riel; Karien Bloem; W.W.J. Unger; Fabrizio Chiodo; Jan G. M. Bolscher; Kamran Nazmi; Hakan Kalay; Y. van Kooyk

Dendritic cells are the most powerful type of antigen presenting cells. Current immunotherapies targeting dendritic cells have shown a relative degree of success but still require further improvement. One of the most important issues to solve is the efficiency of antigen delivery to dendritic cells in order to achieve an appropriate uptake, processing, and presentation to Ag-specific T cells. C-type lectins have shown to be ideal receptors for the targeting of antigens to dendritic cells and allow the use of their natural ligands - glycans - instead of antibodies. Amongst them, dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) is an interesting candidate due to its biological properties and the availability of its natural carbohydrate ligands. Using Le(b)-conjugated poly(amido amine) (PAMAM) dendrimers we aimed to characterize the optimal level of multivalency necessary to achieve the desired internalization, lysosomal delivery, Ag-specific T cell proliferation, and cytokine response. Increasing DC-SIGN ligand multivalency directly translated in an enhanced binding, which might also be interesting for blocking purposes. Internalization, routing to lysosomal compartments, antigen presentation and cytokine response could be optimally achieved with glycopeptide dendrimers carrying 16-32 glycan units. This report provides the basis for the design of efficient targeting of peptide antigens for the immunotherapy of cancer, autoimmunity and infectious diseases.


Biometals | 2010

Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli

Héctor Flores-Villaseñor; Adrian Canizalez-Roman; Magda Reyes-López; Kamram Nazmi; Mireya de la Garza; Jorge Zazueta-Beltran; Nidia León-Sicairos; Jan G. M. Bolscher

Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria is thus needed. This study therefore aimed to evaluate the ability of bovine lactoferrin (LF), peptides from two antimicrobial domains lactoferricin B (LFcin17-30) and lactoferrampin (LFampin265-284) and a chimeric construct (LFchimera) containing both peptides, as potential bactericidal agents against clinical isolates of antibiotic-resistant Staphylococcus aureus and Escherichia coli. Results in kinetics of growth show that LF chimera and peptides inhibited the growth of both bacterial species. By confocal microscopy and flow cytometry it was observed that LF and FITC-labeled peptides are able to interact with these bacteria and cause membrane permeabilization, as monitored by propidium iodide staining, these effects were decreased by preincubation with lipopolysaccharide in E. coli. By electron microscopy, a clear cellular damage was observed in bacteria after treatments with LFchimera and peptides, suggesting that interaction and membrane disruption are probably involved as a mechanism of action. In conclusion, results show that LFchimera, LF and peptides have potential as bactericidal agents in the antibiotic-resistant strains of S.aureus and E. coli and also the work strongly suggest that LFcin17-30 and LFampin265-284 acts synergistically with antibiotics against multidrug resistant EPEC and MRSA in vitro.


Journal of Biological Chemistry | 2007

Energy Depletion Protects Candida albicans against Antimicrobial Peptides by Rigidifying Its Cell Membrane

Enno C. I. Veerman; Marianne Valentijn-Benz; Kamran Nazmi; A.L.A. Ruissen; E. Walgreen-Weterings; Jan van Marle; Alexander B. Doust; Wim van 't Hof; Jan G. M. Bolscher; Arie V. Nieuw Amerongen

Inhibitors of the energy metabolism, such as sodium azide and valinomycin, render yeast cells completely resistant against the killing action of a number of cationic antimicrobial peptides, including the salivary antimicrobial peptide Histatin 5. In this study the Histatin 5-mediated killing of the opportunistic yeast Candida albicans was used as a model system to comprehensively investigate the molecular basis underlying this phenomenon. Using confocal and electron microscopy it was demonstrated that the energy poison azide reversibly blocked the entry of Histatin 5 at the level of the yeast cell wall. Azide treatment hardly induced depolarization of the yeast cell membrane potential, excluding it as a cause of the lowered sensitivity. In contrast, the diminished sensitivity to Histatin 5 of energy-depleted C. albicans was restored by increasing the fluidity of the membrane using the membrane fluidizer benzyl alcohol. Furthermore, rigidification of the membrane by incubation at low temperature or in the presence of the membrane rigidifier Me2SO increased the resistance against Histatin 5, while not affecting the energy charge of the cell. In line, azide induced alterations in the physical state of the interior of the lipid bilayer. These data demonstrate that changes in the physical state of the membrane underlie the increased resistance to antimicrobial peptides.


Biochemical Journal | 2004

Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5.

Enno C. I. Veerman; Kamran Nazmi; Wim van 't Hof; Jan G. M. Bolscher; Alice L. den Hertog; Arie V. Nieuw Amerongen

The mechanism of action of antimicrobial peptides is still a matter of debate. The formation of ROS (reactive oxygen species) has been suggested to be the crucial step in the fungicidal mechanism of a number of antimicrobial peptides, including histatin 5 and lactoferrin-derived peptides. In the present study we have investigated the effects of histatin 5 and of a more amphipathic synthetic derivative, dhvar4, on the generation of ROS in the yeast Candida albicans, using dihydroethidium as an indicator for ROS. With both peptides, a substantial enhancement of fluorescence was observed. However, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), a cell-permeant ROS scavenger, did not have an inhibitory effect on killing or on the enhancement of fluorescence. Furthermore, antimycin and azide, which have been reported to induce ROS in vitro, were not able to enhance the dihydroethidium fluorescence, while chlorhexidine, a non-specific antiseptic agent, enhanced dihydroethidium fluorescence to the same extent as did the peptides. Fluorescence microscopy showed the fluorescence enhancement to be a consequence of the release of unbound preformed ethidium from the mitochondrial matrix within the cell. It is concluded that ROS do not play a role in the histatin 5-mediated killing of C. albicans.


Peptides | 2005

Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli

Marieke I.A. van der Kraan; Jan van Marle; Kamran Nazmi; Jasper Groenink; Wim van 't Hof; Enno C. I. Veerman; Jan G. M. Bolscher; Arie V. Nieuw Amerongen

Antimicrobial peptides allegedly exert their action on microbial membranes. Bovine lactoferrin enfold two antimicrobial domains, lactoferricin B (LFcin B) and lactoferrampin (LFampin). Effects of representative peptides thereof on the membranes of Candida albicans and Escherichia coli were investigated. Confocal laser scanning microscopy revealed that these peptides were internalized within a few minutes, concurrently with disrupting membrane integrity as indicated by freeze-fracture transmission electron microscopy. The most striking findings were induction of distinct vesicle-like structures in the membrane of C. albicans by the LFampin peptide, and detachment of the outer membrane and surface protrusions in E. coli by the LFcin B peptide.


Biological Chemistry | 2005

Lactoferrampin, an antimicrobial peptide of bovine lactoferrin, exerts its candidacidal activity by a cluster of positively charged residues at the C-terminus in combination with a helix facilitating N-terminal part

Marieke I.A. van der Kraan; Kamran Nazmi; Afke Teeken; Jasper Groenink; Wim van 't Hof; Enno C. I. Veerman; Jan G. M. Bolscher; Arie V. Nieuw Amerongen

Abstract The antimicrobial activity of bovine lactoferrin (bLF) is attributed to lactoferricin, which is situated in the N1-domain of bLF. Recently, another antimicrobial domain consisting of residues 268–284, designated lactoferrampin (LFampin), has been identified in the N1-domain of bLF, which exhibited antimicrobial activity against Candida albicans and several bacteria. In the present study, the candidacidal activity of a series of peptides spanning this antimicrobial domain was investigated in relation to the charge and the capacity to form a helical conformation in hydrophobic environments. C-Terminal truncation of LFampin resulted in a drastic decrease in candidacidal activity. Positively charged residues clustered at the C-terminal side of the LFampin domain appeared to be crucial for the candidacidal activity. The ability to adopt helical conformations did not change when LFampin was truncated at the C-terminal side. N-Terminally truncated LFampin peptides, truncated up to the sequence 270–284, were more reluctant to adopt a helical conformation. Therefore, we conclude that the C-terminal part of LFampin 265–284, which is the most active peptide, is crucial for its candidacidal activity, due to the presence of clustered positive charges, and that the N-terminal part is essential for activity as it facilitates helix formation.

Collaboration


Dive into the Jan G. M. Bolscher's collaboration.

Top Co-Authors

Avatar

Kamran Nazmi

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Enno C. I. Veerman

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Arie V. Nieuw Amerongen

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Wim van 't Hof

Academic Center for Dentistry Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nidia León-Sicairos

Autonomous University of Sinaloa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Canizalez-Roman

Autonomous University of Sinaloa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisabeth Bloemena

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge