Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Govaere is active.

Publication


Featured researches published by Jan Govaere.


Cytometry Part A | 2012

In Search for Cross-Reactivity to Immunophenotype Equine Mesenchymal Stromal Cells by Multicolor Flow Cytometry

Catharina De Schauwer; Sofie Piepers; Gerlinde R. Van de Walle; Kristel Demeyere; Maarten Hoogewijs; Jan Govaere; Kevin Braeckmans; Ann Van Soom; Evelyne Meyer

During recent years, cell‐based therapies using mesenchymal stem cells (MSC) are reported in equine veterinary medicine with increasing frequency. In most cases, the isolation and in vitro differentiation of equine MSC are described, but their proper immunophenotypic characterization is rarely performed. The lack of a single marker specific for MSC and the limited availability of monoclonal antibodies (mAbs) for equine MSC in particular, strongly hamper this research. In this study, 30 commercial mAbs were screened with flow cytometry for recognizing equine epitopes using the appropriate positive controls to confirm their specificity. Cross‐reactivity was found and confirmed by confocal microscopy for CD45, CD73, CD79α, CD90, CD105, MHC‐II, a monocyte marker, and two clones tested for CD29 and CD44. Unfortunately, none of the evaluated CD34 clones recognized the equine epitopes on positive control endothelial cells. Subsequently, umbilical cord blood‐derived undifferentiated equine MSC of the fourth passage of six horses were characterized using multicolor flow cytometry based on the selected nine‐marker panel of both cell surface antigens and intracytoplasmatic proteins. In addition, appropriate positive and negative controls were included, and the viable single cell population was analyzed by excluding dead cells using 7‐aminoactinomycin D. Isolated equine MSC of the fourth passage were found to be CD29, CD44, CD90 positive and CD45, CD79α, MHC‐II, and a monocyte marker negative. A variable expression was found for CD73 and CD105. Successful differentiation towards the osteogenic, chondrogenic, and adipogenic lineage was used as additional validation. We suggest that this selected nine‐marker panel can be used for the adequate immunophenotyping of equine MSC.


BMC Research Notes | 2009

Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen-thawed in vitro blastocysts

Katrien Smits; Karen Goossens; Ann Van Soom; Jan Govaere; Maarten Hoogewijs; E. Vanhaesebrouck; Cesare Galli; Silvia Colleoni; Jo Vandesompele; Luc Peelman

BackgroundApplication of reverse transcription quantitative real-time polymerase chain reaction is very well suited to reveal differences in gene expression between in vivo and in vitro produced embryos. Ultimately, this may lead to optimized equine assisted reproductive techniques. However, for a correct interpretation of the real-time PCR results, all data must be normalized, which is most reliably achieved by calculating the geometric mean of the most stable reference genes. In this study a set of reliable reference genes was identified for equine in vivo and fresh and frozen-thawed in vitro embryos.FindingsThe expression stability of 8 candidate reference genes (ACTB, GAPDH, H2A/I, HPRT1, RPL32, SDHA, TUBA4A, UBC) was determined in 3 populations of equine blastocysts (fresh in vivo, fresh and frozen-thawed in vitro embryos). Application of geNorm indicated UBC, GAPDH, ACTB and HPRT1 as the most stable genes in the in vivo embryos and UBC, RPL32, GAPDH and ACTB in both in vitro populations. When in vivo and in vitro embryos were combined, UBC, ACTB, RPL32 and GAPDH were found to be the most stable. SDHA and H2A/I appeared to be highly regulated.ConclusionsBased on these results, the geometric mean of UBC, ACTB, RPL32 and GAPDH is to be recommended for accurate normalization of quantitative real-time PCR data in equine in vivo and in vitro produced blastocysts.


Theriogenology | 2010

Influence of different centrifugation protocols on equine semen preservation.

Maarten Hoogewijs; Tom Rijsselaere; Sarne De Vliegher; E. Vanhaesebrouck; Catharina De Schauwer; Jan Govaere; Mirjan Thys; Geert Hoflack; Ann Van Soom; Aart de Kruif

Three experiments were conducted to evaluate the impact of centrifugation on cooled and frozen preservation of equine semen. A standard centrifugation protocol (600 x g for 10 min=CP1) was compared to four protocols with increasing g-force and decreased time period (600 x g, 1200 x g, 1800 x g and 2400 x g for 5 min for CP2, 3, 4, and 5, respectively) and to an uncentrifuged negative control. In experiment 1, the influence of the different CPs on sperm loss was evaluated by calculating the total number of sperm cells in 90% of the supernatant. Moreover, the effect on semen quality following centrifugation was assessed by monitoring several sperm parameters (membrane integrity using SYBR14-PI, acrosomal status using PSA-FITC, percentage total motility (TM), percentage progressive motility (PM) and beat cross frequency (BCF) obtained with computer assisted sperm analysis (CASA)) immediately after centrifugation and daily during chilled storage for 3 d. The use of CP1 resulted in a sperm loss of 22%. Increasing the centrifugation force to 1800 x g and 2400 x g for 5 min led to significantly lower sperm losses (7.4% and 2.1%, respectively; P<0.05). Compared to the uncentrifuged samples, centrifugation of semen resulted in a better sperm quality after chilled storage. There were minimal differences between the CPs although total motility was lower for CP2 than for the other treatments (P<0.005). In experiment 2, the centrifuged samples were cryopreserved using a standard freezing protocol and analyzed immediately upon thawing. Samples centrifuged according to CP2 resulted in a higher BCF (P<0.005), whereas CP3 and CP5 yielded a lower BCF (P<0.05) when compared to CP1. There were no post thaw differences between CP1 and CP4. In experiment 3, DNA integrity of the different samples was analyzed using TUNEL. Although DNA integrity decreased over time, CP had no impact. In conclusion, the loss of sperm cells in the supernatant after centrifugation can be substantially reduced by increasing the g-force up to 1800 x g or 2400 x g for a shorter period of time (5 min) compared to the standard protocol without apparent changes in semen quality, resulting in a considerable increase in the number of insemination doses per ejaculate.


Stem Cell Research & Therapy | 2014

Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources

Catharina De Schauwer; Karen Goossens; Sofie Piepers; Maarten Hoogewijs; Jan Govaere; Katrien Smits; Evelyne Meyer; Ann Van Soom; Gerlinde R. Van de Walle

IntroductionMesenchymal stromal cells (MSCs) have been extensively studied for their promising capabilities in regenerative medicine. Although bone marrow is the best-known source for isolating equine MSCs, non-invasive alternative sources such as umbilical cord blood (UCB), umbilical cord matrix (UCM), and peripheral blood (PB) have also been reported.MethodsEquine MSCs from three non-invasive alternative sources were isolated from six individual mares (PB) and their foals (UCB and UCM) at parturition. To minimize inter-horse variability, the samples from the three sources were matched within the same mare and for UCB and UCM even within the same foal from that specific mare. The following parameters were analyzed: (i) success rate of isolation, (ii) proliferation capacity, (iii) tri-lineage differentiation ability, (iv) immunophenotypical protein, and (v) immunomodulatory mRNA profiles. Linear regression models were fit to determine the association between the source of MSCs (UCB, UCM, PB) and (i) the moment of first observation, (ii) the moment of first passage, (iii) cell proliferation data, (iv) the expression of markers related to cell immunogenicity, and (v) the mRNA profile of immunomodulatory factors, except for hepatocyte growth factor (HGF) as no normal distribution could be obtained for the latter variable. To evaluate the association between the source of MSCs and the mRNA expression of HGF, the non-parametric Kruskal-Wallis test was performed instead.ResultsWhile equine MSCs could be isolated from all the UCB and PB samples, isolation from UCM was successful in only two samples because of contamination issues. Proliferation data showed that equine MSCs from all three sources could be easily expanded, although UCB-derived MSCs appeared significantly faster in culture than PB- or UCM-derived MSCs. Equine MSCs from both UCB and PB could be differentiated toward the osteo-, chondro-, and adipogenic lineage, in contrast to UCM-derived MSCs in which only chondro- and adipogenic differentiation could be confirmed. Regardless of the source, equine MSCs expressed the immunomodulatory genes CD40, CD80, HGF, and transforming growth factor-beta (TGFβ). In contrast, no mRNA expression was found for CD86, indoleamine 2,3-dioxygenase (IDO), and tumor necrosis factor-alpha (TNFα).ConclusionsWhereas UCM seems less feasible because of the high contamination risks and low isolation success rates, UCB seems a promising alternative MSC source, especially when considering allogeneic MSC use.


Tissue Engineering Part C-methods | 2011

Optimization of the Isolation, Culture, and Characterization of Equine Umbilical Cord Blood Mesenchymal Stromal Cells

Catharina De Schauwer; Evelyne Meyer; Pieter Cornillie; Sarne De Vliegher; Gerlinde R. Van de Walle; Maarten Hoogewijs; Heidi Declercq; Jan Govaere; Kristel Demeyere; Maria Cornelissen; Ann Van Soom

Mesenchymal stromal cells (MSC) represent a promising population for supporting new clinical concepts in cellular therapy. A wide diversity of isolation procedures for MSC from umbilical cord blood (UCB) has been described for humans. In contrast, a few data are available in horses. In the current study, a sedimentation method using hydroxyethyl starch and a method based on the lysis of red blood cells using ammonium chloride (NH(4)Cl) were compared with two density gradient separation methods (Ficoll-Paque and Percoll). Adherent cell colonies could be established using all four isolation methods. The mononuclear cell recovery after Percoll separation, however, resulted in significantly more putative MSC colonies; and, therefore, this isolation method was used for all further experiments. Culture conditions such as cell density and medium or serum coating of the wells did not significantly affect putative MSC recovery. Isolated MSC using Percoll were subsequently differentiated toward the osteogenic, chondrogenic, and adipogenic lineage. In addition, MSC were phenotyped by multicolor flow cytometry based on their expression of different cell protein markers. Cultured MSC were CD29, CD44, and CD90-positive and CD79α, Macrophage/Monocyte and MHC II-negative. In conclusion, this study reports optimized protocols to isolate, culture, and characterize solid equine MSC from UCB.


Reproduction in Domestic Animals | 2012

A pilot comparison of laser-assisted vs piezo drill ICSI for the in vitro production of horse embryos.

Katrien Smits; Jan Govaere; Maarten Hoogewijs; Sofie Piepers; A. Van Soom

Intracytoplasmic sperm injection (ICSI) is the method of choice for the in vitro production (IVP) of equine embryos. However, conventional ICSI has been associated with mechanical damage to the oocyte caused by the deformation of the zona pellucida (ZP) and exposure of the oolemma to negative pressure during injection. Introduction of the less traumatic and more efficient piezo drill-assisted ICSI (PDAI) yielded higher cleavage rates and more consistent results. Nevertheless, PDAI is also associated with disadvantages such as the use of mercury and possible DNA damage. This led us to explore an alternative method avoiding oocyte trauma, namely laser-assisted ICSI (LAI), which involves creating a hole in the ZP prior to ICSI. In this pilot study, PDAI and LAI were compared for ICSI in the horse. No significant influences on subsequent embryonic development were observed.


Reproduction | 2012

Influence of the uterine environment on the development of in vitro produced equine embryos

Katrien Smits; Jan Govaere; Luc Peelman; Karen Goossens; Dirk C. de Graaf; Dries Vercauteren; Leen Vandaele; Maarten Hoogewijs; Eline Wydooghe; T.A.E. Stout; Ann Van Soom

The necessity for early interaction between the embryo and the oviductal and/or uterine environment in the horse is reflected by several striking differences between equine embryos that develop in vivo and those produced in vitro. Better understanding of the salient interactions may help to improve the efficiency of in vitro equine embryo production. In an initial experiment, cleavage-stage in vitro-produced (IVP) equine embryos were transferred into the uterus of recipient mares that had ovulated recently to determine whether premature placement in this in vivo environment would improve subsequent development. In a second experiment, an important element of the uterine environment was mimicked by adding uterocalin, a major component of the endometrial secretions during early pregnancy, to the culture medium. Intrauterine transfer of cleavage-stage IVP equine embryos yielded neither ultrasonographically detectable pregnancies nor day 7 blastocysts, indicating that the uterus is not a suitable environment for pre-compact morula stage horse embryos. By contrast, exposure to uterocalin during IVP improved capsule formation, although it did not measurably affect the development or expression of a panel of genes known to differ between in vivo and in vitro embryos. Further studies are required to evaluate whether uterocalin serves purely as a carrier protein or more directly promotes improved capsule development.


Reproduction, Fertility and Development | 2011

In vivo-derived horse blastocysts show transcriptional upregulation of developmentally important genes compared with in vitro-produced horse blastocysts

Katrien Smits; Karen Goossens; Ann Van Soom; Jan Govaere; Maarten Hoogewijs; Luc Peelman

In vitro-produced (IVP) equine blastocysts can give rise to successful pregnancies, but their morphology and developmental rate differ from those of in vivo-derived equine blastocysts. The aim of the present study was to evaluate this difference at the genetic level. Suppression subtractive hybridisation (SSH) was used to construct a cDNA library enriched for transcripts preferentially expressed in in vivo-derived equine blastocysts compared with IVP blastocysts. Of the 62 different genes identified in this way, six genes involved in embryonic development (BEX2, FABP3, HSP90AA1, MOBKL3, MCM7 and ODC) were selected to confirm this differential expression by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Using RT-qPCR, five genes were confirmed to be significantly upregulated in in vivo-derived blastocysts (i.e. FABP3, HSP90AA1 (both P<0.05), ODC, MOBKL3 and BEX2 (P<0.005 for all three)), confirming the results of the SSH. There was no significant difference in MCM7 expression between IVP and in vivo-derived blastocysts. In conclusion, five genes that are transcriptionally upregulated in in vivo-derived equine blastocysts compared with IVP blastocysts have been identified. Because of their possible importance in embryonic development, the expression of these genes can be used as a marker to evaluate in vitro embryo production systems in the horse.


Equine Veterinary Journal | 2007

Antibodies to elastin peptides in sera of Belgian Draught horses with chronic progressive lymphoedema

Leen Van Brantegem; Hev De Cock; Vk Affolter; Luc Duchateau; Maarten Hoogewijs; Jan Govaere; Gl Ferraro; Richard Ducatelle

REASONS FOR PERFORMING STUDY Chronic progressive lymphoedema (CPL) is a recently recognised disease of the lymphatic system characterised by lesions in the skin of the lower legs in several draught horse breeds, including the Belgian Draught hourse. Clinical signs slowly progress and result in severe disfigurement of the limbs. Ideally, supportive treatment should be started early in the disease process. However early diagnosis and monitoring progression of CPL is still a challenge. HYPOTHESIS Elastin changes, characterised by morphological alterations as well as increased desmosine levels, in the skin of the distal limbs of horses affected with CPL are probably associated with a marked release of elastin degradation products, which elicit production of circulating anti-elastin antibodies (AEAbs) in the serum. An enzyme-linked immunosorbent assay (ELISA) for detection of serum AEAbs may document elastin breakdown. METHODS An ELISA technique was used to evaluate levels of AEAbs in sera of 97 affected Belgian Draught horses that were clinically healthy except for possible skin lesions, associated with CPL in their distal limbs. The horses were divided into 5 groups according to the severity of these skin lesions: normal horses (Group 1, n = 36), horses with mild lesions (Group 2, n = 43), horses with moderate lesions (Group 3, n = 8), horses with severe lesions (Group 4, n = 10) and, as a control, healthy Warmblood horses, unaffected by the disease (Group 5, n = 83). RESULTS Horses with clinical signs of CPL had significantly higher AEAb levels compared to clinically normal Belgian Draught horses and to healthy Warmblood horses. These levels correlated with severity of lesions. CONCLUSIONS CPL in draught horses is associated with an increase of serum AEAbs. POTENTIAL RELEVANCE Evaluation of serum levels of AEAbs by ELISA might be a useful diagnostic aid for CPL. Pathological degradation of elastic fibres, resulting in deficient support of the distal lymphatics, is proposed as a contributing factor for CPL in Belgian Draught horses.


Reproduction in Domestic Animals | 2009

An Abortion of Monozygotic Twins in a Warmblood Mare

Jan Govaere; Maarten Hoogewijs; C. De Schauwer; A. Van Zeveren; Katrien Smits; Pieter Cornillie; A. de Kruif

Naturally occurring monozygotic twins are extremely rare in the horse. This paper describes an abortion in a mare after 260 days of pregnancy with monozygotic twins, one a fresh foal and the other a mummified foal.

Collaboration


Dive into the Jan Govaere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge